934 resultados para non-linear regression
Resumo:
Radial Basis Function networks with linear outputs are often used in regression problems because they can be substantially faster to train than Multi-layer Perceptrons. For classification problems, the use of linear outputs is less appropriate as the outputs are not guaranteed to represent probabilities. In this paper we show how RBFs with logistic and softmax outputs can be trained efficiently using algorithms derived from Generalised Linear Models. This approach is compared with standard non-linear optimisation algorithms on a number of datasets.
Resumo:
Linear models reach their limitations in applications with nonlinearities in the data. In this paper new empirical evidence is provided on the relative Euro inflation forecasting performance of linear and non-linear models. The well established and widely used univariate ARIMA and multivariate VAR models are used as linear forecasting models whereas neural networks (NN) are used as non-linear forecasting models. It is endeavoured to keep the level of subjectivity in the NN building process to a minimum in an attempt to exploit the full potentials of the NN. It is also investigated whether the historically poor performance of the theoretically superior measure of the monetary services flow, Divisia, relative to the traditional Simple Sum measure could be attributed to a certain extent to the evaluation of these indices within a linear framework. Results obtained suggest that non-linear models provide better within-sample and out-of-sample forecasts and linear models are simply a subset of them. The Divisia index also outperforms the Simple Sum index when evaluated in a non-linear framework. © 2005 Taylor & Francis Group Ltd.
Resumo:
Blurred edges appear sharper in motion than when they are stationary. We (Vision Research 38 (1998) 2108) have previously shown how such distortions in perceived edge blur may be accounted for by a model which assumes that luminance contrast is encoded by a local contrast transducer whose response becomes progressively more compressive as speed increases. If the form of the transducer is fixed (independent of contrast) for a given speed, then a strong prediction of the model is that motion sharpening should increase with increasing contrast. We measured the sharpening of periodic patterns over a large range of contrasts, blur widths and speeds. The results indicate that whilst sharpening increases with speed it is practically invariant with contrast. The contrast invariance of motion sharpening is not explained by an early, static compressive non-linearity alone. However, several alternative explanations are also inconsistent with these results. We show that if a dynamic contrast gain control precedes the static non-linear transducer then motion sharpening, its speed dependence, and its invariance with contrast, can be predicted with reasonable accuracy. © 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
This thesis is a study of three techniques to improve performance of some standard fore-casting models, application to the energy demand and prices. We focus on forecasting demand and price one-day ahead. First, the wavelet transform was used as a pre-processing procedure with two approaches: multicomponent-forecasts and direct-forecasts. We have empirically compared these approaches and found that the former consistently outperformed the latter. Second, adaptive models were introduced to continuously update model parameters in the testing period by combining ?lters with standard forecasting methods. Among these adaptive models, the adaptive LR-GARCH model was proposed for the fi?rst time in the thesis. Third, with regard to noise distributions of the dependent variables in the forecasting models, we used either Gaussian or Student-t distributions. This thesis proposed a novel algorithm to infer parameters of Student-t noise models. The method is an extension of earlier work for models that are linear in parameters to the non-linear multilayer perceptron. Therefore, the proposed method broadens the range of models that can use a Student-t noise distribution. Because these techniques cannot stand alone, they must be combined with prediction models to improve their performance. We combined these techniques with some standard forecasting models: multilayer perceptron, radial basis functions, linear regression, and linear regression with GARCH. These techniques and forecasting models were applied to two datasets from the UK energy markets: daily electricity demand (which is stationary) and gas forward prices (non-stationary). The results showed that these techniques provided good improvement to prediction performance.
Resumo:
This thesis describes an experimental and analytic study of the effects of magnetic non-linearity and finite length on the loss and field distribution in solid iron due to a travelling mmf wave. In the first half of the thesis, a two-dimensional solution is developed which accounts for the effects of both magnetic non-linearity and eddy-current reaction; this solution is extended, in the second half, to a three-dimensional model. In the two-dimensional solution, new equations for loss and flux/pole are given; these equations contain the primary excitation, the machine parameters and factors describing the shape of the normal B-H curve. The solution applies to machines of any air-gap length. The conditions for maximum loss are defined, and generalised torque/frequency curves are obtained. A relationship between the peripheral component of magnetic field on the surface of the iron and the primary excitation is given. The effects of magnetic non-linearity and finite length are combined analytically by introducing an equivalent constant permeability into a linear three-dimensional analysis. The equivalent constant permeability is defined from the non-linear solution for the two-dimensional magnetic field at the axial centre of the machine to avoid iterative solutions. In the linear three-dimensional analysis, the primary excitation in the passive end-regions of the machine is set equal to zero and the secondary end faces are developed onto the air-gap surface. The analyses, and the assumptions on which they are based, were verified on an experimental machine which consists of a three-phase rotor and alternative solid iron stators, one with copper end rings, and one without copper end rings j the main dimensions of the two stators are identical. Measurements of torque, flux /pole, surface current density and radial power flow were obtained for both stators over a range of frequencies and excitations. Comparison of the measurements on the two stators enabled the individual effects of finite length and saturation to be identified, and the definition of constant equivalent permeability to be verified. The penetration of the peripheral flux into the stator with copper end rings was measured and compared with theoretical penetration curves. Agreement between measured and theoretical results was generally good.
Resumo:
The spatial patterns of diffuse, primitive, classic and compact beta-amyloid (Abeta) deposits were studied in the medial temporal lobe in 14 elderly, non-demented patients (ND) and in nine patients with Alzheimer’s disease (AD). In both patient groups, Abeta deposits were clustered and in a number of tissues, a regular periodicity of Abeta deposit clusters was observed parallel to the tissue boundary. The primitive deposit clusters were significantly larger in the AD cases but there were no differences in the sizes of the diffuse and classic deposit clusters between patient groups. In AD, the relationship between Abeta deposit cluster size and density in the tissue was non-linear. This suggested that cluster size increased with increasing Abeta deposit density in some tissues while in others, Abeta deposit density was high but contained within smaller clusters. It was concluded that the formation of large clusters of primitive deposits could be a factor in the development of AD.
Resumo:
Fitting a linear regression to data provides much more information about the relationship between two variables than a simple correlation test. A goodness of fit test of the line should always be carried out. Hence, ‘r squared’ estimates the strength of the relationship between Y and X, ANOVA whether a statistically significant line is present, and the ‘t’ test whether the slope of the line is significantly different from zero. In addition, it is important to check whether the data fit the assumptions for regression analysis and, if not, whether a transformation of the Y and/or X variables is necessary.
Resumo:
1. Fitting a linear regression to data provides much more information about the relationship between two variables than a simple correlation test. A goodness of fit test of the line should always be carried out. Hence, r squared estimates the strength of the relationship between Y and X, ANOVA whether a statistically significant line is present, and the ‘t’ test whether the slope of the line is significantly different from zero. 2. Always check whether the data collected fit the assumptions for regression analysis and, if not, whether a transformation of the Y and/or X variables is necessary. 3. If the regression line is to be used for prediction, it is important to determine whether the prediction involves an individual y value or a mean. Care should be taken if predictions are made close to the extremities of the data and are subject to considerable error if x falls beyond the range of the data. Multiple predictions require correction of the P values. 3. If several individual regression lines have been calculated from a number of similar sets of data, consider whether they should be combined to form a single regression line. 4. If the data exhibit a degree of curvature, then fitting a higher-order polynomial curve may provide a better fit than a straight line. In this case, a test of whether the data depart significantly from a linear regression should be carried out.
Resumo:
This paper presents some forecasting techniques for energy demand and price prediction, one day ahead. These techniques combine wavelet transform (WT) with fixed and adaptive machine learning/time series models (multi-layer perceptron (MLP), radial basis functions, linear regression, or GARCH). To create an adaptive model, we use an extended Kalman filter or particle filter to update the parameters continuously on the test set. The adaptive GARCH model is a new contribution, broadening the applicability of GARCH methods. We empirically compared two approaches of combining the WT with prediction models: multicomponent forecasts and direct forecasts. These techniques are applied to large sets of real data (both stationary and non-stationary) from the UK energy markets, so as to provide comparative results that are statistically stronger than those previously reported. The results showed that the forecasting accuracy is significantly improved by using the WT and adaptive models. The best models on the electricity demand/gas price forecast are the adaptive MLP/GARCH with the multicomponent forecast; their MSEs are 0.02314 and 0.15384 respectively.
Resumo:
This book is aimed primarily at microbiologists who are undertaking research and who require a basic knowledge of statistics to analyse their experimental data. Computer software employing a wide range of data analysis methods is widely available to experimental scientists. The availability of this software, however, makes it essential that investigators understand the basic principles of statistics. Statistical analysis of data can be complex with many different methods of approach, each of which applies in a particular experimental circumstance. Hence, it is possible to apply an incorrect statistical method to data and to draw the wrong conclusions from an experiment. The purpose of this book, which has its origin in a series of articles published in the Society for Applied Microbiology journal ‘The Microbiologist’, is an attempt to present the basic logic of statistics as clearly as possible and therefore, to dispel some of the myths that often surround the subject. The 28 ‘Statnotes’ deal with various topics that are likely to be encountered, including the nature of variables, the comparison of means of two or more groups, non-parametric statistics, analysis of variance, correlating variables, and more complex methods such as multiple linear regression and principal components analysis. In each case, the relevant statistical method is illustrated with examples drawn from experiments in microbiological research. The text incorporates a glossary of the most commonly used statistical terms and there are two appendices designed to aid the investigator in the selection of the most appropriate test.
Resumo:
In previous statnotes, the application of correlation and regression methods to the analysis of two variables (X,Y) was described. These methods can be used to determine whether there is a linear relationship between the two variables, whether the relationship is positive or negative, to test the degree of significance of the linear relationship, and to obtain an equation relating Y to X. This Statnote extends the methods of linear correlation and regression to situations where there are two or more X variables, i.e., 'multiple linear regression’.
Resumo:
This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. In our forecasting experiment we use two non-linear techniques, namely, recurrent neural networks and kernel recursive least squares regression - techniques that are new to macroeconomics. Recurrent neural networks operate with potentially unbounded input memory, while the kernel regression technique is a finite memory predictor. The two methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a naive random walk model. The best models were non-linear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation.
Resumo:
Purpose - Anterior segment optical coherent tomography (AS-OCT) is used to further examine previous reports that ciliary muscle thickness (CMT) is increased in myopic eyes. With reference to temporal and nasal CMT, interrelationships between biometric and morphological characteristics of anterior and posterior segments are analysed for British-White and British-South-Asian adults with and without myopia. Methods - Data are presented for the right eyes of 62 subjects (British-White n = 39, British-South-Asian n = 23, aged 18–40 years) with a range of refractive error (mean spherical error (MSE (D)) -1.74 ± 3.26; range -10.06 to +4.38) and separated into myopes (MSE (D) <-0.50, range -10.06 to -0.56; n = 30) and non-myopes (MSE (D) =-0.50, -0.50 to +4.38; n = 32). Temporal and nasal ciliary muscle cross-sections were imaged using a Visante AS-OCT. Using Visante software, manual measures of nasal and temporal CMT (NCMT and TCMT respectively) were taken in successive posterior 1 mm steps from the scleral spur over a 3 mm distance (designated NCMT1, TCMT1 et seq). Measures of axial length and anterior chamber depth were taken with an IOLMaster biometer. MSE and corneal curvature (CC) measurements were taken with a Shin-Nippon auto-refractor. Magnetic resonance imaging was used to determine total ocular volume (OV) for 31 of the original subject group. Statistical comparisons and analyses were made using mixed repeated measures anovas, Pearson's correlation coefficient and stepwise forward multiple linear regression. Results - MSE was significantly associated with CMT, with thicker CMT2 and CMT3 being found in the myopic eyes (p = 0.002). In non-myopic eyes TCMT1, TCMT2, NCMT1 and NCMT2 correlated significantly with MSE, AL and OV (p < 0.05). In contrast, myopic eyes failed generally to exhibit a significant correlation between CMT, MSE and axial length but notably retained a significant correlation between OV, TCMT2, TCMT3, NCMT2 and NCMT3 (p < 0.05). OV was found to be a significantly better predictor of TCMT2 and TCMT3 than AL by approximately a factor of two (p < 0.001). Anterior chamber depth was significantly associated with both temporal and nasal CMT2 and CMT3; TCMT1 correlated positively with CC. Ethnicity had no significant effect on differences in CMT. Conclusions - Increased CMT is associated with myopia. We speculate that the lack of correlation in myopic subjects between CMT and axial length, but not between CMT and OV, is evidence that disrupted feedback between the fovea and ciliary apparatus occurs in myopia development.
Resumo:
Purpose: To determine whether curve-fitting analysis of the ranked segment distributions of topographic optic nerve head (ONH) parameters, derived using the Heidelberg Retina Tomograph (HRT), provide a more effective statistical descriptor to differentiate the normal from the glaucomatous ONH. Methods: The sample comprised of 22 normal control subjects (mean age 66.9 years; S.D. 7.8) and 22 glaucoma patients (mean age 72.1 years; S.D. 6.9) confirmed by reproducible visual field defects on the Humphrey Field Analyser. Three 10°-images of the ONH were obtained using the HRT. The mean topography image was determined and the HRT software was used to calculate the rim volume, rim area to disc area ratio, normalised rim area to disc area ratio and retinal nerve fibre cross-sectional area for each patient at 10°-sectoral intervals. The values were ranked in descending order, and each ranked-segment curve of ordered values was fitted using the least squares method. Results: There was no difference in disc area between the groups. The group mean cup-disc area ratio was significantly lower in the normal group (0.204 ± 0.16) compared with the glaucoma group (0.533 ± 0.083) (p < 0.001). The visual field indices, mean deviation and corrected pattern S.D., were significantly greater (p < 0.001) in the glaucoma group (-9.09 dB ± 3.3 and 7.91 ± 3.4, respectively) compared with the normal group (-0.15 dB ± 0.9 and 0.95 dB ± 0.8, respectively). Univariate linear regression provided the best overall fit to the ranked segment data. The equation parameters of the regression line manually applied to the normalised rim area-disc area and the rim area-disc area ratio data, correctly classified 100% of normal subjects and glaucoma patients. In this study sample, the regression analysis of ranked segment parameters method was more effective than conventional ranked segment analysis, in which glaucoma patients were misclassified in approximately 50% of cases. Further investigation in larger samples will enable the calculation of confidence intervals for normality. These reference standards will then need to be investigated for an independent sample to fully validate the technique. Conclusions: Using a curve-fitting approach to fit ranked segment curves retains information relating to the topographic nature of neural loss. Such methodology appears to overcome some of the deficiencies of conventional ranked segment analysis, and subject to validation in larger scale studies, may potentially be of clinical utility for detecting and monitoring glaucomatous damage. © 2007 The College of Optometrists.
Resumo:
Spectrally modulated Airy-based pulses peak amplitude modulation (PAM) in linear dispersive media is investigated, designed, and numerically simulated. As it is shown here, it is possible to design the spectral modulation of the initial Airy-based pulses to obtain a pre-defined PAM profile as the pulse propagates. Although optical pulses self-amplitude modulation is a well-known effect under non-linear propagation, the designed Airy-based pulses exhibit PAM under linear dispersive propagation. This extraordinary linear propagation property can be applied in many kinds of dispersive media, enabling its use in a broad range of experiments and applications. © 2013 Optical Society of America.