989 resultados para network interference
Resumo:
This work derives inner and outer bounds on the generalized degrees of freedom (GDOF) of the K-user symmetric MIMO Gaussian interference channel. For the inner bound, an achievable GDOF is derived by employing a combination of treating interference as noise, zero-forcing at the receivers, interference alignment (IA), and extending the Han-Kobayashi (HK) scheme to K users, depending on the number of antennas and the INR/SNR level. An outer bound on the GDOF is derived, using a combination of the notion of cooperation and providing side information to the receivers. Several interesting conclusions are drawn from the bounds. For example, in terms of the achievable GDOF in the weak interference regime, when the number of transmit antennas (M) is equal to the number of receive antennas (N), treating interference as noise performs the same as the HK scheme and is GDOF optimal. For K >; N/M+1, a combination of the HK and IA schemes performs the best among the schemes considered. However, for N/M <; K ≤ N/M+1, the HK scheme is found to be GDOF optimal.
Resumo:
Recently, Guo and Xia introduced low complexity decoders called Partial Interference Cancellation (PIC) and PIC with Successive Interference Cancellation (PIC-SIC), which include the Zero Forcing (ZF) and ZF-SIC receivers as special cases, for point-to-point MIMO channels. In this paper, we show that PIC and PIC-SIC decoders are capable of achieving the full cooperative diversity available in wireless relay networks. We give sufficient conditions for a Distributed Space-Time Block Code (DSTBC) to achieve full diversity with PIC and PIC-SIC decoders and construct a new class of DSTBCs with low complexity full-diversity PIC-SIC decoding using complex orthogonal designs. The new class of codes includes a number of known full-diversity PIC/PIC-SIC decodable Space-Time Block Codes (STBCs) constructed for point-to-point channels as special cases. The proposed DSTBCs achieve higher rates (in complex symbols per channel use) than the multigroup ML decodable DSTBCs available in the literature. Simulation results show that the proposed codes have better bit error rate performance than the best known low complexity, full-diversity DSTBCs.
Resumo:
Recently, Ebrahimi and Fragouli proposed an algorithm to construct scalar network codes using small fields (and vector network codes of small lengths) satisfying multicast constraints in a given single-source, acyclic network. The contribution of this paper is two fold. Primarily, we extend the scalar network coding algorithm of Ebrahimi and Fragouli (henceforth referred to as the EF algorithm) to block network-error correction. Existing construction algorithms of block network-error correcting codes require a rather large field size, which grows with the size of the network and the number of sinks, and thereby can be prohibitive in large networks. We give an algorithm which, starting from a given network-error correcting code, can obtain another network code using a small field, with the same error correcting capability as the original code. Our secondary contribution is to improve the EF Algorithm itself. The major step in the EF algorithm is to find a least degree irreducible polynomial which is coprime to another large degree polynomial. We suggest an alternate method to compute this coprime polynomial, which is faster than the brute force method in the work of Ebrahimi and Fragouli.
Resumo:
In this paper optical code-division multiple-access (O-CDMA) packet network is considered. Two types of random access protocols are proposed for packet transmission. In protocol 1, all distinct codes and in protocol 2, distinct codes as well as shifted versions of all these codes are used. O-CDMA network performance using optical orthogonal codes (OOCs) 1-D and twodimensional (2-D) wavelength/time single-pulse-per-row (W/TSPR) codes are analyzed. The main advantage of using 2-D codes instead of one-dimensional (1-D) codes is to reduce the errors due to multiple access interference among different users. In this paper, correlation receiver is considered in the analysis. Using analytical model, we compute and compare packet-success probability for 1-D and 2-D codes in an O-CDMA network and the analysis shows improved performance with 2-D codes as compared to 1-D codes.
Resumo:
with the development of large scale wireless networks, there has been short comings and limitations in traditional network topology management systems. In this paper, an adaptive algorithm is proposed to maintain topology of hybrid wireless superstore network by considering the transactions and individual network load. The adaptations include to choose the best network connection for the response, and to perform network Connection switching when network situation changes. At the same time, in terms of the design for topology management systems, aiming at intelligence, real-time, the study makes a step-by-step argument and research on the overall topology management scheme. Architecture for the adaptive topology management of hybrid wireless networking resources is available to user’s mobile device. Simulation results describes that the new scheme has outperformed the original topology management and it is simpler than the original rate borrowing scheme.
Resumo:
We study the performance of cognitive (secondary) users in a cognitive radio network which uses a channel whenever the primary users are not using the channel. The usage of the channel by the primary users is modelled by an ON-OFF renewal process. The cognitive users may be transmitting data using TCP connections and voice traffic. The voice traffic is given priority over the data traffic. We theoretically compute the mean delay of TCP and voice packets and also the mean throughput of the different TCP connections. We compare the theoretical results with simulations.
Resumo:
In this paper we consider the downlink of an OFDM cellular system. The objective is to maximise the system utility by means of fractional frequency reuse and interference planning. The problem is a joint scheduling and power allocation problem. Using gradient scheduling scheme, the above problem is transformed to a problem of maximising weighted sum-rate at each time slot. At each slot, an iterative scheduling and power allocation algorithm is employed to address the weighted sum-rate maximisation problem. The power allocation problem in the above algorithm is a nonconvex optimisation problem. We study several algorithms that can tackle this part of the problem. We propose two modifications to the above algorithms to address practical and computational feasibility. Finally, we compare the performance of our algorithm with some existing algorithms based on certain achieved system utility metrics. We show that the practical considerations do not affect the system performance adversely.
Resumo:
Effective network overload alleviation is very much essential in order to maintain security and integrity from the operational viewpoint of deregulated power systems. This paper aims at developing a methodology to reschedule the active power generation from the sources in order to manage the network congestion under normal/contingency conditions. An effective method has been proposed using fuzzy rule based inference system. Using virtual flows concept, which provides partial contributions/counter flows in the network elements is used as a basis in the proposed method to manage network congestions to the possible extent. The proposed method is illustrated on a sample 6 bus test system and on modified IEEE 39 bus system.
Resumo:
We report novel resistor grid network based space cloth for application in single and multi layer radar absorbers. The space cloth is analyzed and relations are derived for the sheet resistance in terms of the resistor in the grid network. Design curves are drawn using MATLAB and the space cloth is analyzed using HFSS™ software in a Salisbury screen for S, C and X bands. Next, prediction and simulation results for a three layer Jaumann absorber using square grid resistor network with a Radar Cross Section Reduction (RCSR) of -15 dB over C, X and Ku bands is reported. The simulation results are encouraging and have led to the fabrication of prototype broadband radar absorber and experimental work is under progress.
Resumo:
The Radio Interference (RI) from electric power transmission line hardware, if not controlled, poses serious electromagnetic interference to system in the vicinity. The present work mainly concerns with the RI from the insulator string along with the associated line hardware. The laboratory testing for the RI levels are carried out through the measurement of the conducted radio interference levels. However such measurements do not really locate the coronating point, as well as, the mode of corona. At the same time experience shows that it is rather difficult to locate the coronating points by mere inspection. After a thorough look into the intricacies of the problem, it is ascertained that the measurement of associated ground end currents could give a better picture of the prevailing corona modes and their intensities. A study on the same is attempted in the present work. Various intricacies of the problem,features of ground end current pulses and its correlation with RI are dealt with. Owing to the complexity of such experimental investigations, the study made is not fully complete nevertheless it seems to be first of its kind.
Resumo:
In the underlay mode of cognitive radio, secondary users are allowed to transmit when the primary is transmitting, but under tight interference constraints that protect the primary. However, these constraints limit the secondary system performance. Antenna selection (AS)-based multiple antenna techniques, which exploit spatial diversity with less hardware, help improve secondary system performance. We develop a novel and optimal transmit AS rule that minimizes the symbol error probability (SEP) of an average interference-constrained multiple-input-single-output secondary system that operates in the underlay mode. We show that the optimal rule is a non-linear function of the power gain of the channel from the secondary transmit antenna to the primary receiver and from the secondary transmit antenna to the secondary receive antenna. We also propose a simpler, tractable variant of the optimal rule that performs as well as the optimal rule. We then analyze its SEP with L transmit antennas, and extensively benchmark it with several heuristic selection rules proposed in the literature. We also enhance these rules in order to provide a fair comparison, and derive new expressions for their SEPs. The results bring out new inter-relationships between the various rules, and show that the optimal rule can significantly reduce the SEP.
Resumo:
The performance analysis of adaptive physical layer network-coded two-way relaying scenario is presented which employs two phases: Multiple access (MA) phase and Broadcast (BC) phase. The deep channel fade conditions which occur at the relay referred as the singular fade states fall in the following two classes: (i) removable and (ii) non-removable singular fade states. With every singular fade state, we associate an error probability that the relay transmits a wrong network-coded symbol during the BC phase. It is shown that adaptive network coding provides a coding gain over fixed network coding, by making the error probabilities associated with the removable singular fade states contributing to the average Symbol Error Rate (SER) fall as SNR-2 instead of SNR-1. A high SNR upper-bound on the average end-to-end SER for the adaptive network coding scheme is derived, for a Rician fading scenario, which is found to be tight through simulations. Specifically, it is shown that for the adaptive network coding scheme, the probability that the relay node transmits a wrong network-coded symbol is upper-bounded by twice the average SER of a point-to-point fading channel, at high SNR. Also, it is shown that in a Rician fading scenario, it suffices to remove the effect of only those singular fade states which contribute dominantly to the average SER.
Resumo:
With ever increasing demand for electric energy, additional generation and associated transmission facilities has to be planned and executed. In order to augment existing transmission facilities, proper planning and selective decisions are to be made whereas keeping in mind the interests of several parties who are directly or indirectly involved. Common trend is to plan optimal generation expansion over the planning period in order to meet the projected demand with minimum cost capacity addition along with a pre-specified reliability margin. Generation expansion at certain locations need new transmission network which involves serious problems such as getting right of way, environmental clearance etc. In this study, an approach to the citing of additional generation facilities in a given system with minimum or no expansion in the transmission facility is attempted using the network connectivity and the concept of electrical distance for projected load demand. The proposed approach is suitable for large interconnected systems with multiple utilities. Sample illustration on real life system is presented in order to show how this approach improves the overall performance on the operation of the system with specified performance parameters.
Resumo:
Protein structure space is believed to consist of a finite set of discrete folds, unlike the protein sequence space which is astronomically large, indicating that proteins from the available sequence space are likely to adopt one of the many folds already observed. In spite of extensive sequence-structure correlation data, protein structure prediction still remains an open question with researchers having tried different approaches (experimental as well as computational). One of the challenges of protein structure prediction is to identify the native protein structures from a milieu of decoys/models. In this work, a rigorous investigation of Protein Structure Networks (PSNs) has been performed to detect native structures from decoys/ models. Ninety four parameters obtained from network studies have been optimally combined with Support Vector Machines (SVM) to derive a general metric to distinguish decoys/models from the native protein structures with an accuracy of 94.11%. Recently, for the first time in the literature we had shown that PSN has the capability to distinguish native proteins from decoys. A major difference between the present work and the previous study is to explore the transition profiles at different strengths of non-covalent interactions and SVM has indeed identified this as an important parameter. Additionally, the SVM trained algorithm is also applied to the recent CASP10 predicted models. The novelty of the network approach is that it is based on general network properties of native protein structures and that a given model can be assessed independent of any reference structure. Thus, the approach presented in this paper can be valuable in validating the predicted structures. A web-server has been developed for this purpose and is freely available at http://vishgraph.mbu.iisc.ernet.in/GraProStr/PSN-QA.html.
Resumo:
Wavelength-division multiplexing (WDM) technology, by which multiple optical channels can be simultaneously transmitted at different wavelengths through a single optical fiber, is a useful means of making full use of the low-loss characteristics of optical fibers over a wide-wavelength region. The present day multifunction RADARs with multiple transmit receive modules requires various kinds of signal distribution for real time operation. If the signal distribution can be achieved through optical networks by using Wavelength Division Multiplexing (WDM) methods, it results in a distribution scheme with less hardware complexity and leads to the reduction in the weight of the antenna arrays In addition, being an Optical network it is free from Electromagnetic interference which is a crucial requirement in an array environment. This paper discusses about the analysis performed on various WDM components of distribution optical network for radar applications. The analysis is performed by considering the feasible constant gain regions of Erbium doped fiber amplifier (EDFA) in Matlab environment. This will help the user in the selection of suitable components for WDM based optical distribution networks.