825 resultados para multi-mediational path model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water-saturated debris flows are among some of the most destructive mass movements. Their complex nature presents a challenge for quantitative description and modeling. In order to improve understanding of the dynamics of these flows, it is important to seek a simplified dynamic system underlying their behavior. Models currently in use to describe the motion of debris flows employ depth-averaged equations of motion, typically assuming negligible effects from vertical acceleration. However, in many cases debris flows experience significant vertical acceleration as they move across irregular surfaces, and it has been proposed that friction associated with vertical forces and liquefaction merit inclusion in any comprehensive mechanical model. The intent of this work is to determine the effect of vertical acceleration through a series of laboratory experiments designed to simulate debris flows, testing a recent model for debris flows experimentally. In the experiments, a mass of water-saturated sediment is released suddenly from a holding container, and parameters including rate of collapse, pore-fluid pressure, and bed load are monitored. Experiments are simplified to axial geometry so that variables act solely in the vertical dimension. Steady state equations to infer motion of the moving sediment mass are not sufficient to model accurately the independent solid and fluid constituents in these experiments. The model developed in this work more accurately predicts the bed-normal stress of a saturated sediment mass in motion and illustrates the importance of acceleration and deceleration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To mitigate greenhouse gas (GHG) emissions and reduce U.S. dependence on imported oil, the United States (U.S.) is pursuing several options to create biofuels from renewable woody biomass (hereafter referred to as “biomass”). Because of the distributed nature of biomass feedstock, the cost and complexity of biomass recovery operations has significant challenges that hinder increased biomass utilization for energy production. To facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization and tapping unused forest residues, it is proposed to develop biofuel supply chain models based on optimization and simulation approaches. The biofuel supply chain is structured around four components: biofuel facility locations and sizes, biomass harvesting/forwarding, transportation, and storage. A Geographic Information System (GIS) based approach is proposed as a first step for selecting potential facility locations for biofuel production from forest biomass based on a set of evaluation criteria, such as accessibility to biomass, railway/road transportation network, water body and workforce. The development of optimization and simulation models is also proposed. The results of the models will be used to determine (1) the number, location, and size of the biofuel facilities, and (2) the amounts of biomass to be transported between the harvesting areas and the biofuel facilities over a 20-year timeframe. The multi-criteria objective is to minimize the weighted sum of the delivered feedstock cost, energy consumption, and GHG emissions simultaneously. Finally, a series of sensitivity analyses will be conducted to identify the sensitivity of the decisions, such as the optimal site selected for the biofuel facility, to changes in influential parameters, such as biomass availability and transportation fuel price. Intellectual Merit The proposed research will facilitate the exploration of a wide variety of conditions that promise profitable biomass utilization in the renewable biofuel industry. The GIS-based facility location analysis considers a series of factors which have not been considered simultaneously in previous research. Location analysis is critical to the financial success of producing biofuel. The modeling of woody biomass supply chains using both optimization and simulation, combing with the GIS-based approach as a precursor, have not been done to date. The optimization and simulation models can help to ensure the economic and environmental viability and sustainability of the entire biofuel supply chain at both the strategic design level and the operational planning level. Broader Impacts The proposed models for biorefineries can be applied to other types of manufacturing or processing operations using biomass. This is because the biomass feedstock supply chain is similar, if not the same, for biorefineries, biomass fired or co-fired power plants, or torrefaction/pelletization operations. Additionally, the research results of this research will continue to be disseminated internationally through publications in journals, such as Biomass and Bioenergy, and Renewable Energy, and presentations at conferences, such as the 2011 Industrial Engineering Research Conference. For example, part of the research work related to biofuel facility identification has been published: Zhang, Johnson and Sutherland [2011] (see Appendix A). There will also be opportunities for the Michigan Tech campus community to learn about the research through the Sustainable Future Institute.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Embedded siloxane polymer waveguides have shown promising results for use in optical backplanes. They exhibit high temperature stability, low optical absorption, and require common processing techniques. A challenging aspect of this technology is out-of-plane coupling of the waveguides. A multi-software approach to modeling an optical vertical interconnect (via) is proposed. This approach utilizes the beam propagation method to generate varied modal field distribution structures which are then propagated through a via model using the angular spectrum propagation technique. Simulation results show average losses between 2.5 and 4.5 dB for different initial input conditions. Certain configurations show losses of less than 3 dB and it is shown that in an input/output pair of vias, average losses per via may be lower than the targeted 3 dB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Invasive exotic plants have altered natural ecosystems across much of North America. In the Midwest, the presence of invasive plants is increasing rapidly, causing changes in ecosystem patterns and processes. Early detection has become a key component in invasive plant management and in the detection of ecosystem change. Risk assessment through predictive modeling has been a useful resource for monitoring and assisting with treatment decisions for invasive plants. Predictive models were developed to assist with early detection of ten target invasive plants in the Great Lakes Network of the National Park Service and for garlic mustard throughout the Upper Peninsula of Michigan. These multi-criteria risk models utilize geographic information system (GIS) data to predict the areas at highest risk for three phases of invasion: introduction, establishment, and spread. An accuracy assessment of the models for the ten target plants in the Great Lakes Network showed an average overall accuracy of 86.3%. The model developed for garlic mustard in the Upper Peninsula resulted in an accuracy of 99.0%. Used as one of many resources, the risk maps created from the model outputs will assist with the detection of ecosystem change, the monitoring of plant invasions, and the management of invasive plants through prioritized control efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile Mesh Network based In-Transit Visibility (MMN-ITV) system facilitates global real-time tracking capability for the logistics system. In-transit containers form a multi-hop mesh network to forward the tracking information to the nearby sinks, which further deliver the information to the remote control center via satellite. The fundamental challenge to the MMN-ITV system is the energy constraint of the battery-operated containers. Coupled with the unique mobility pattern, cross-MMN behavior, and the large-spanned area, it is necessary to investigate the energy-efficient communication of the MMN-ITV system thoroughly. First of all, this dissertation models the energy-efficient routing under the unique pattern of the cross-MMN behavior. A new modeling approach, pseudo-dynamic modeling approach, is proposed to measure the energy-efficiency of the routing methods in the presence of the cross-MMN behavior. With this approach, it could be identified that the shortest-path routing and the load-balanced routing is energy-efficient in mobile networks and static networks respectively. For the MMN-ITV system with both mobile and static MMNs, an energy-efficient routing method, energy-threshold routing, is proposed to achieve the best tradeoff between them. Secondly, due to the cross-MMN behavior, neighbor discovery is executed frequently to help the new containers join the MMN, hence, consumes similar amount of energy as that of the data communication. By exploiting the unique pattern of the cross-MMN behavior, this dissertation proposes energy-efficient neighbor discovery wakeup schedules to save up to 60% of the energy for neighbor discovery. Vehicular Ad Hoc Networks (VANETs)-based inter-vehicle communications is by now growingly believed to enhance traffic safety and transportation management with low cost. The end-to-end delay is critical for the time-sensitive safety applications in VANETs, and can be a decisive performance metric for VANETs. This dissertation presents a complete analytical model to evaluate the end-to-end delay against the transmission range and the packet arrival rate. This model illustrates a significant end-to-end delay increase from non-saturated networks to saturated networks. It hence suggests that the distributed power control and admission control protocols for VANETs should aim at improving the real-time capacity (the maximum packet generation rate without causing saturation), instead of the delay itself. Based on the above model, it could be determined that adopting uniform transmission range for every vehicle may hinder the delay performance improvement, since it does not allow the coexistence of the short path length and the low interference. Clusters are proposed to configure non-uniform transmission range for the vehicles. Analysis and simulation confirm that such configuration can enhance the real-time capacity. In addition, it provides an improved trade off between the end-to-end delay and the network capacity. A distributed clustering protocol with minimum message overhead is proposed, which achieves low convergence time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physics of the operation of singe-electron tunneling devices (SEDs) and singe-electron tunneling transistors (SETs), especially of those with multiple nanometer-sized islands, has remained poorly understood in spite of some intensive experimental and theoretical research. This computational study examines the current-voltage (IV) characteristics of multi-island single-electron devices using a newly developed multi-island transport simulator (MITS) that is based on semi-classical tunneling theory and kinetic Monte Carlo simulation. The dependence of device characteristics on physical device parameters is explored, and the physical mechanisms that lead to the Coulomb blockade (CB) and Coulomb staircase (CS) characteristics are proposed. Simulations using MITS demonstrate that the overall IV characteristics in a device with a random distribution of islands are a result of a complex interplay among those factors that affect the tunneling rates that are fixed a priori (e.g. island sizes, island separations, temperature, gate bias, etc.), and the evolving charge state of the system, which changes as the source-drain bias (VSD) is changed. With increasing VSD, a multi-island device has to overcome multiple discrete energy barriers (up-steps) before it reaches the threshold voltage (Vth). Beyond Vth, current flow is rate-limited by slow junctions, which leads to the CS structures in the IV characteristic. Each step in the CS is characterized by a unique distribution of island charges with an associated distribution of tunneling probabilities. MITS simulation studies done on one-dimensional (1D) disordered chains show that longer chains are better suited for switching applications as Vth increases with increasing chain length. They are also able to retain CS structures at higher temperatures better than shorter chains. In sufficiently disordered 2D systems, we demonstrate that there may exist a dominant conducting path (DCP) for conduction, which makes the 2D device behave as a quasi-1D device. The existence of a DCP is sensitive to the device structure, but is robust with respect to changes in temperature, gate bias, and VSD. A side gate in 1D and 2D systems can effectively control Vth. We argue that devices with smaller island sizes and narrower junctions may be better suited for practical applications, especially at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All optical systems that operate in or through the atmosphere suffer from turbulence induced image blur. Both military and civilian surveillance, gun-sighting, and target identification systems are interested in terrestrial imaging over very long horizontal paths, but atmospheric turbulence can blur the resulting images beyond usefulness. My dissertation explores the performance of a multi-frame-blind-deconvolution technique applied under anisoplanatic conditions for both Gaussian and Poisson noise model assumptions. The technique is evaluated for use in reconstructing images of scenes corrupted by turbulence in long horizontal-path imaging scenarios and compared to other speckle imaging techniques. Performance is evaluated via the reconstruction of a common object from three sets of simulated turbulence degraded imagery representing low, moderate and severe turbulence conditions. Each set consisted of 1000 simulated, turbulence degraded images. The MSE performance of the estimator is evaluated as a function of the number of images, and the number of Zernike polynomial terms used to characterize the point spread function. I will compare the mean-square-error (MSE) performance of speckle imaging methods and a maximum-likelihood, multi-frame blind deconvolution (MFBD) method applied to long-path horizontal imaging scenarios. Both methods are used to reconstruct a scene from simulated imagery featuring anisoplanatic turbulence induced aberrations. This comparison is performed over three sets of 1000 simulated images each for low, moderate and severe turbulence-induced image degradation. The comparison shows that speckle-imaging techniques reduce the MSE 46 percent, 42 percent and 47 percent on average for low, moderate, and severe cases, respectively using 15 input frames under daytime conditions and moderate frame rates. Similarly, the MFBD method provides, 40 percent, 29 percent, and 36 percent improvements in MSE on average under the same conditions. The comparison is repeated under low light conditions (less than 100 photons per pixel) where improvements of 39 percent, 29 percent and 27 percent are available using speckle imaging methods and 25 input frames and 38 percent, 34 percent and 33 percent respectively for the MFBD method and 150 input frames. The MFBD estimator is applied to three sets of field data and the results presented. Finally, a combined Bispectrum-MFBD Hybrid estimator is proposed and investigated. This technique consistently provides a lower MSE and smaller variance in the estimate under all three simulated turbulence conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multi-parametric and quantitative magnetic resonance imaging (MRI) techniques have come into the focus of interest, both as a research and diagnostic modality for the evaluation of patients suffering from mild cognitive decline and overt dementia. In this study we address the question, if disease related quantitative magnetization transfer effects (qMT) within the intra- and extracellular matrices of the hippocampus may aid in the differentiation between clinically diagnosed patients with Alzheimer disease (AD), patients with mild cognitive impairment (MCI) and healthy controls. We evaluated 22 patients with AD (n=12) and MCI (n=10) and 22 healthy elderly (n=12) and younger (n=10) controls with multi-parametric MRI. Neuropsychological testing was performed in patients and elderly controls (n=34). In order to quantify the qMT effects, the absorption spectrum was sampled at relevant off-resonance frequencies. The qMT-parameters were calculated according to a two-pool spin-bath model including the T1- and T2 relaxation parameters of the free pool, determined in separate experiments. Histograms (fixed bin-size) of the normalized qMT-parameter values (z-scores) within the anterior and posterior hippocampus (hippocampal head and body) were subjected to a fuzzy-c-means classification algorithm with downstreamed PCA projection. The within-cluster sums of point-to-centroid distances were used to examine the effects of qMT- and diffusion anisotropy parameters on the discrimination of healthy volunteers, patients with Alzheimer and MCIs. The qMT-parameters T2(r) (T2 of the restricted pool) and F (fractional pool size) differentiated between the three groups (control, MCI and AD) in the anterior hippocampus. In our cohort, the MT ratio, as proposed in previous reports, did not differentiate between MCI and AD or healthy controls and MCI, but between healthy controls and AD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustained growth of solid tumours can rely on both the formation of new and the co-option of existing blood vessels. Current models suggest that binding of angiopoietin-2 (Ang-2) to its endothelial Tie2 receptor prevents receptor phosphorylation, destabilizes blood vessels, and promotes vascular permeability. In contrast, binding of angiopoietin-1 (Ang-1) induces Tie2 receptor activation and supports the formation of mature blood vessels covered by pericytes. Despite the intense research to decipher the role of angiopoietins during physiological neovascularization and tumour angiogenesis, a mechanistic understanding of angiopoietin function on vascular integrity and remodelling is still incomplete. We therefore assessed the vascular morphology of two mouse mammary carcinoma xenotransplants (M6378 and M6363) which differ in their natural angiopoietin expression. M6378 displayed Ang-1 in tumour cells but no Ang-2 in tumour endothelial cells in vivo. In contrast, M6363 tumours expressed Ang-2 in the tumour vasculature, whereas no Ang-1 expression was present in tumour cells. We stably transfected M6378 mouse mammary carcinoma cells with human Ang-1 or Ang-2 and investigated the consequences on the host vasculature, including ultrastructural morphology. Interestingly, M6378/Ang-2 and M6363 tumours displayed a similar vascular morphology, with intratumoural haemorrhage and non-functional and abnormal blood vessels. Pericyte loss was prominent in these tumours and was accompanied by increased endothelial cell apoptosis. Thus, overexpression of Ang-2 converted the vascular phenotype of M6378 tumours into a phenotype similar to M6363 tumours. Our results support the hypothesis that Ang-1/Tie2 signalling is essential for vessel stabilization and endothelial cell/pericyte interaction, and suggest that Ang-2 is able to induce a switch of vascular phenotypes within tumours.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many applications, such as telepresence, virtual reality, and interactive walkthroughs, require a three-dimensional(3D)model of real-world environments. Methods, such as lightfields, geometric reconstruction and computer vision use cameras to acquire visual samples of the environment and construct a model. Unfortunately, obtaining models of real-world locations is a challenging task. In particular, important environments are often actively in use, containing moving objects, such as people entering and leaving the scene. The methods previously listed have difficulty in capturing the color and structure of the environment while in the presence of moving and temporary occluders. We describe a class of cameras called lag cameras. The main concept is to generalize a camera to take samples over space and time. Such a camera, can easily and interactively detect moving objects while continuously moving through the environment. Moreover, since both the lag camera and occluder are moving, the scene behind the occluder is captured by the lag camera even from viewpoints where the occluder lies in between the lag camera and the hidden scene. We demonstrate an implementation of a lag camera, complete with analysis and captured environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigate how a multilinear model can be used to represent human motion data. Based on technical modes (referring to degrees of freedom and number of frames) and natural modes that typically appear in the context of a motion capture session (referring to actor, style, and repetition), the motion data is encoded in form of a high-order tensor. This tensor is then reduced by using N-mode singular value decomposition. Our experiments show that the reduced model approximates the original motion better then previously introduced PCA-based approaches. Furthermore, we discuss how the tensor representation may be used as a valuable tool for the synthesis of new motions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The procurement of transportation services via large-scale combinatorial auctions involves a couple of complex decisions whose outcome highly influences the performance of the tender process. This paper examines the shipper's task of selecting a subset of the submitted bids which efficiently trades off total procurement cost against expected carrier performance. To solve this bi-objective winner determination problem, we propose a Pareto-based greedy randomized adaptive search procedure (GRASP). As a post-optimizer we use a path relinking procedure which is hybridized with branch-and-bound. Several variants of this algorithm are evaluated by means of artificial test instances which comply with important real-world characteristics. The two best variants prove superior to a previously published Pareto-based evolutionary algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although an increasing number of studies of technological, institutional and organizational change refer to the concepts of path dependence and path creation, few attempts have been made to consider these concepts explicitly in their methodological accounts. This paper addresses this gap and contributes to the literature by developing a comprehensive methodology that originates from the concepts of path dependence and path creation – path constitution analysis (PCA) – and allows for the integration of multi-actor constellations on multiple levels of analysis within a process perspective. Based upon a longitudinal case study in the field of semiconductors, we illustrate PCA ‘in action’ as a template for other researchers and critically examine its adequacy. We conclude with implications for further path-oriented inquiries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present in this paper several contributions on the collision detection optimization centered on hardware performance. We focus on the broad phase which is the first step of the collision detection process and propose three new ways of parallelization of the well-known Sweep and Prune algorithm. We first developed a multi-core model takes into account the number of available cores. Multi-core architecture enables us to distribute geometric computations with use of multi-threading. Critical writing section and threads idling have been minimized by introducing new data structures for each thread. Programming with directives, like OpenMP, appears to be a good compromise for code portability. We then proposed a new GPU-based algorithm also based on the "Sweep and Prune" that has been adapted to multi-GPU architectures. Our technique is based on a spatial subdivision method used to distribute computations among GPUs. Results show that significant speed-up can be obtained by passing from 1 to 4 GPUs in a large-scale environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION Low systolic blood pressure (SBP) is an important secondary insult following traumatic brain injury (TBI), but its exact relationship with outcome is not well characterised. Although a SBP of <90mmHg represents the threshold for hypotension in consensus TBI treatment guidelines, recent studies suggest redefining hypotension at higher levels. This study therefore aimed to fully characterise the association between admission SBP and mortality to further inform resuscitation endpoints. METHODS We conducted a multicentre cohort study using data from the largest European trauma registry. Consecutive adult patients with AIS head scores >2 admitted directly to specialist neuroscience centres between 2005 and July 2012 were studied. Multilevel logistic regression models were developed to examine the association between admission SBP and 30 day inpatient mortality. Models were adjusted for confounders including age, severity of injury, and to account for differential quality of hospital care. RESULTS 5057 patients were included in complete case analyses. Admission SBP demonstrated a smooth u-shaped association with outcome in a bivariate analysis, with increasing mortality at both lower and higher values, and no evidence of any threshold effect. Adjusting for confounding slightly attenuated the association between mortality and SBP at levels <120mmHg, and abolished the relationship for higher SBP values. Case-mix adjusted odds of death were 1.5 times greater at <120mmHg, doubled at <100mmHg, tripled at <90mmHg, and six times greater at SBP<70mmHg, p<0.01. CONCLUSIONS These findings indicate that TBI studies should model SBP as a continuous variable and may suggest that current TBI treatment guidelines, using a cut-off for hypotension at SBP<90mmHg, should be reconsidered.