969 resultados para moving object classification
Resumo:
The perovskite crystal structure is host to many different materials from insulating to superconducting providing a diverse range of intrinsic character and complexity. A better fundamental description of these materials in terms of their electronic, optical and magnetic properties undoubtedly precedes an effective realization of their application potential. SmTiOa, a distorted perovskite has a strongly localized electronic structure and undergoes an antiferromagnetic transition at 50 K in its nominally stoichiometric form. Sr2Ru04 is a layered perovskite superconductor (ie. Tc % 1 K) bearing the same structure as the high-tem|>erature superconductor La2_xSrrCu04. Polarized reflectance measurements were carried out on both of these materials revealing several interesting features in the far-infrared range of the spectrum. In the case of SmTiOa, although insulating, evidence indicates the presence of a finite background optical conductivity. As the temperature is lowered through the ordering temperature a resonance feature appears to narrow and strengthen near 120 cm~^ A nearby phonon mode appears to also couple to this magnetic transition as revealed by a growing asymmetry in the optica] conductivity. Experiments on a doped sample with a greater itinerant character and lower Neel temperature = 40 K also indicate the presence of this strongly temperature dependent mode even at twice the ordering temperature. Although the mode appears to be sensitive to the magnetic transition it is unclear whether a magnon assignment is appropriate. At very least, evidence suggests an interesting interaction between magnetic and electronic excitations. Although Sr2Ru04 is highly anisotropic it is metallic in three-dimensions at low temperatures and reveals its coherent transport in an inter-plane Drude-like component to the highest temperatures measured (ie. 90 K). An extended Drude analysis is used to probe the frequency dependent scattering character revealing a peak in both the mass enhancement and scattering rate near 80 cm~* and 100 cm~* respectively. All of these experimental observations appear relatively consistent with a Fermi-liquid picture of charge transport. To supplement the optical measurements a resistivity station was set up with an event driven object oriented user interface. The program controls a Keithley Current Source, HP Nano-Voltmeter and Switching Unit as well as a LakeShore Temperature Controller in order to obtain a plot of the Resistivity as a function of temperature. The system allows for resistivity measurements ranging from 4 K to 290 K using an external probe or between 0.4 K to 295 K using a Helium - 3 Cryostat. Several materials of known resistivity have confirmed the system to be robust and capable of measuring metallic samples distinguishing features of several fiQ-cm.
Resumo:
This thesis will introduce a new strongly typed programming language utilizing Self types, named Win--*Foy, along with a suitable user interface designed specifically to highlight language features. The need for such a programming language is based on deficiencies found in programming languages that support both Self types and subtyping. Subtyping is a concept that is taken for granted by most software engineers programming in object-oriented languages. Subtyping supports subsumption but it does not support the inheritance of binary methods. Binary methods contain an argument of type Self, the same type as the object itself, in a contravariant position, i.e. as a parameter. There are several arguments in favour of introducing Self types into a programming language (11. This rationale led to the development of a relation that has become known as matching [4, 5). The matching relation does not support subsumption, however, it does support the inheritance of binary methods. Two forms of matching have been proposed (lJ. Specifically, these relations are known as higher-order matching and I-bound matching. Previous research on these relations indicates that the higher-order matching relation is both reflexive and transitive whereas the f-bound matching is reflexive but not transitive (7]. The higher-order matching relation provides significant flexibility regarding inheritance of methods that utilize or return values of the same type. This flexibility, in certain situations, can restrict the programmer from defining specific classes and methods which are based on constant values [21J. For this reason, the type This is used as a second reference to the type of the object that cannot, contrary to Self, be specialized in subclasses. F-bound matching allows a programmer to define a function that will work for all types of A', a subtype of an upper bound function of type A, with the result type being dependent on A'. The use of parametric polymorphism in f-bound matching provides a connection to subtyping in object-oriented languages. This thesis will contain two main sections. Firstly, significant details concerning deficiencies of the subtype relation and the need to introduce higher-order and f-bound matching relations into programming languages will be explored. Secondly, a new programming language named Win--*Foy Functional Object-Oriented Programming Language has been created, along with a suitable user interface, in order to facilitate experimentation by programmers regarding the matching relation. The construction of the programming language and the user interface will be explained in detail.
Resumo:
The study examined the intentional use of National Sport Organizations' (NSOs) stated values. Positive Organizational Scholarship (POS) was applied to an Appreciative Inquiry (AI) approach of interviewing NSO senior leaders. One intention of this research was to foster a connection between academia and practitioners, and in so doing highlight the gap between values inaction and values-in-action. Data were collected from nine NSOs through multiple-case studies analysis of interview transcripts, websites, and constitutional statements. Results indicated that while the NSOs operated from a Management by Objectives (MBO) approach they were interested in exploring how Management by Values (MBV) might improve their organization's performance. Eleven themes from the case studies analysis contributed to the development of a framework. The 4-1 framework described how an NSO can progress through different stages by becoming more intentional in how they use their values. Another finding included deepening our understanding of how values are experienced within the NSO and then transferred across the entire sport. Participants also spoke about the tension that arises among their NSO' s values as well as the dominant values held by funding agents. This clash of values needs to be addressed before the tension escalates. Finally, participants expressed a desire to learn more about how values can be used more intentionally to further their organization's purpose. As such, strategies for intentionally leveraging values are also suggested. Further research should explore how helpful the 4-1 framework can be to NSOs leaders who are in the process of identifying or renewing their organization's values.
Resumo:
The main focus of this thesis is to evaluate and compare Hyperbalilearning algorithm (HBL) to other learning algorithms. In this work HBL is compared to feed forward artificial neural networks using back propagation learning, K-nearest neighbor and 103 algorithms. In order to evaluate the similarity of these algorithms, we carried out three experiments using nine benchmark data sets from UCI machine learning repository. The first experiment compares HBL to other algorithms when sample size of dataset is changing. The second experiment compares HBL to other algorithms when dimensionality of data changes. The last experiment compares HBL to other algorithms according to the level of agreement to data target values. Our observations in general showed, considering classification accuracy as a measure, HBL is performing as good as most ANn variants. Additionally, we also deduced that HBL.:s classification accuracy outperforms 103's and K-nearest neighbour's for the selected data sets.
Resumo:
Formal verification of software can be an enormous task. This fact brought some software engineers to claim that formal verification is not feasible in practice. One possible method of supporting the verification process is a programming language that provides powerful abstraction mechanisms combined with intensive reuse of code. In this thesis we present a strongly typed functional object-oriented programming language. This language features type operators of arbitrary kind corresponding to so-called type protocols. Sub classing and inheritance is based on higher-order matching, i.e., utilizes type protocols as basic tool for reuse of code. We define the operational and axiomatic semantics of this language formally. The latter is the basis of the interactive proof assistant VOOP (Verified Object-Oriented Programs) that allows the user to prove equational properties of programs interactively.
Resumo:
Globalization has resulted in large-scale international and local assessments closely tied to notions of accountability and competitiveness in a globalized economy. Although policy makers seek to ensure citizens meet the demands of a global knowledge-based economy, such assessments may also impede the development of requisite 21st century skills. While standardization currently is viewed as the most effective measurement of student achievement, several Canadian and international jurisdictions are moving toward assessment for learning (AfL). This conceptual study sought to identify whether AfL or standardized assessment most effectively meets 21st century learning goals in the wake of rapid global change. It applies a Story Model theoretical framework to understand the current, the new emerging, and the future ideal story of education from a personal, cultural, and global lens. The study examines the main critiques and/or challenges of standardized testing, the benefits of AfL for student learning, and new teaching and assessment approaches to the development of 21st century learning goals. The study applies the Story Model’s inside-outside/past-future approach to determine the future direction of assessment. Results show that the new story of assessment will most likely entail a model that integrates both standardized testing and in-class assessments in the form of AfL and PBL.
Resumo:
A moving advertisement for Garden City Dye Works, reads: We have removed from No. 70, St. Paul St. to No. 125 St. Paul St. Opp. the Grand Central Hotel, where we will be pleased to see our old and many new customers. Remember the place. In our new quarters we are better able to meet the requirements of the public in our line. We are up-to-date in all branches of Cleaning and Dying Ladies' and Gent's wearing apparel. Garden City Works, J.L. Wilbur. 125 St. Paul St. Phone 54. P.S. Also agents for Parisian Laundry Co.
Resumo:
For inviscid fluid flow in any n-dimensional Riemannian manifold, new conserved vorticity integrals generalizing helicity, enstrophy, and entropy circulation are derived for lower-dimensional surfaces that move along fluid streamlines. Conditions are determined for which the integrals yield constants of motion for the fluid. In the case when an inviscid fluid is isentropic, these new constants of motion generalize Kelvin’s circulation theorem from closed loops to closed surfaces of any dimension.
Object-Oriented Genetic Programming for the Automatic Inference of Graph Models for Complex Networks
Resumo:
Complex networks are systems of entities that are interconnected through meaningful relationships. The result of the relations between entities forms a structure that has a statistical complexity that is not formed by random chance. In the study of complex networks, many graph models have been proposed to model the behaviours observed. However, constructing graph models manually is tedious and problematic. Many of the models proposed in the literature have been cited as having inaccuracies with respect to the complex networks they represent. However, recently, an approach that automates the inference of graph models was proposed by Bailey [10] The proposed methodology employs genetic programming (GP) to produce graph models that approximate various properties of an exemplary graph of a targeted complex network. However, there is a great deal already known about complex networks, in general, and often specific knowledge is held about the network being modelled. The knowledge, albeit incomplete, is important in constructing a graph model. However it is difficult to incorporate such knowledge using existing GP techniques. Thus, this thesis proposes a novel GP system which can incorporate incomplete expert knowledge that assists in the evolution of a graph model. Inspired by existing graph models, an abstract graph model was developed to serve as an embryo for inferring graph models of some complex networks. The GP system and abstract model were used to reproduce well-known graph models. The results indicated that the system was able to evolve models that produced networks that had structural similarities to the networks generated by the respective target models.
Resumo:
The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and deterministic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel metaheuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS metaheuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.