881 resultados para mouse pituitary
Resumo:
Fgfrl1 (fibroblast growth factor receptor-like 1) is a transmembrane receptor that is essential for the development of the metanephric kidney. It is expressed in all nascent nephrogenic structures and in the ureteric bud. Fgfrl1 null mice fail to develop the metanephric kidneys. Mutant kidney rudiments show a dramatic reduction of ureteric branching and a lack of mesenchymal-to-epithelial transition. Here, we compared the expression profiles of wildtype and Fgfrl1 mutant kidneys to identify genes that act downstream of Fgfrl1 signaling during the early steps of nephron formation. We detected 56 differentially expressed transcripts with 2-fold or greater reduction, among them many genes involved in Fgf, Wnt, Bmp, Notch, and Six/Eya/Dach signaling. We validated the microarray data by qPCR and whole-mount in situ hybridization and showed the expression pattern of candidate genes in normal kidneys. Some of these genes might play an important role during early nephron formation. Our study should help to define the minimal set of genes that is required to form a functional nephron.
Resumo:
PhIP carcinogenesis is initiated by N(2)-hydroxylation, mediated by several cytochromes P450, including CYP1A1. However, the role of CYP1A1 in PhIP metabolic activation in vivo is unclear. In this study, Cyp1a1-null and wild-type (WT) mice were used to investigate the potential role of CYP1A1 in PhIP metabolic activation in vivo. PhIP N(2)-hydroxylation was actively catalyzed by lung homogenates of WT mice, at a rate of 14.9 +/- 5.0 pmol/min/g tissue, but < 1 pmol/min/g tissue in stomach and small intestine, and almost undetectable in mammary gland and colon. PhIP N(2)-hydroxylation catalyzed by lung homogenates of Cyp1a1-null mice was approximately 10-fold lower than that of WT mice. In contrast, PhIP N(2)-hydroxylation activity in lung homogenates of Cyp1a2-null versus WT mice was not decreased. Pretreatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased lung Cyp1a1 mRNA and lung homogenate PhIP N(2)-hydroxylase activity approximately 50-fold in WT mice, where the activity was substantially inhibited (70%) by monoclonal antibodies against CYP1A1. In vivo, 30 min after oral treatment with PhIP, PhIP levels in lung were similar to those in liver. After a single dose of 0.1 mg/kg [(14)C]PhIP, lung PhIP-DNA adduct levels in Cyp1a1-null mice, but not in Cyp1a2-null mice, were significantly lower (P=0.0028) than in WT mice. These results reveal that mouse lung has basal and inducible PhIP N(2)-hydroxylase activity predominantly catalyzed by CYP1A1. Because of the high inducibility of human CYP1A1, especially in cigarette smokers, the role of lung CYP1A1 in PhIP carcinogenesis should be considered.
Resumo:
The areca alkaloids comprise arecoline, arecaidine, guvacoline, and guvacine. Approximately 600 million users of areca nut products, for example, betel quid chewers, are exposed to these alkaloids, principally arecoline and arecaidine. Metabolism of arecoline (20 mg/kg p.o. and i.p.) and arecaidine (20 mg/kg p.o. and i.p.) was investigated in the mouse using a metabolomic approach employing ultra-performance liquid chromatography-time-of-flight mass spectrometric analysis of urines. Eleven metabolites of arecoline were identified, including arecaidine, arecoline N-oxide, arecaidine N-oxide, N-methylnipecotic acid, N-methylnipecotylglycine, arecaidinylglycine, arecaidinylglycerol, arecaidine mercapturic acid, arecoline mercapturic acid, and arecoline N-oxide mercapturic acid, together with nine unidentified metabolites. Arecaidine shared six of these metabolites with arecoline. Unchanged arecoline comprised 0.3-0.4%, arecaidine 7.1-13.1%, arecoline N-oxide 7.4-19.0%, and N-methylnipecotic acid 13.5-30.3% of the dose excreted in 0-12 h urine after arecoline administration. Unchanged arecaidine comprised 15.1-23.0%, and N-methylnipecotic acid 14.8%-37.7% of the dose excreted in 0-12 h urine after arecaidine administration. The major metabolite of both arecoline and arecaidine, N-methylnipecotic acid, is a novel metabolite arising from carbon-carbon double-bond reduction. Another unusual metabolite found was the monoacylglyceride of arecaidine. What role, if any, that is played by these uncommon metabolites in the toxicology of arecoline and arecaidine is not known. However, the enhanced understanding of the metabolic transformation of arecoline and arecaidine should contribute to further research into the clinical toxicology of the areca alkaloids.
Resumo:
Exogenous melatonin is widely used for sleep disorders and has potential value in neuroprotection, cardioprotection and as an antioxidant. Here, a novel method is described for the determination of melatonin and six metabolites in mouse urine by use of LC-MS/MS and GC-MS. LC-MS/MS is used for the measurement of melatonin, N1-acetyl-5-methoxykynuramine (AMK), N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and 6-hydroxymelatonin (6-HMEL), while GC/MS is used for the determination of N-[2-(5-methoxy-2-oxo-2,3-dihydro-1H-indol-3-yl)-ethyl]-acetamide (2-OMEL) and cyclic 3-hydroxymelatonin (3-HMEL) with detection limits on column of 0.02-0.5 pmol, depending on the metabolite. Following oral administration of melatonin to mice, a 0-24 hr urine collection revealed the presence of melatonin (0.2% dose), 6-HMEL (37.1%) and NAS (3.1%) comprising >90% of the total metabolites; AMK and AFMK were also detected at 0.01% each; 2-OMEL was found at 2.2% of the dose, which is >100 times more than the AMK/AFMK pathway, and comprises >5% of the melatonin-related material detected in mouse urine. 3-HMEL was largely found as a sulfate conjugate. These studies establish sensitive assays for determination of six melatonin metabolites in mouse urine and confirm the potential for antioxidant activity of melatonin through the identification in vivo of AMK and AFMK, ring-opened metabolites with a high capacity for scavenging reactive oxygen species.
Resumo:
Immature dendritic cells (DC) reside in tissues where they initiate immune responses by taking up foreign antigens. Since DC have a limited tissue half-life, the DC pool in tissues has to be replenished constantly. This implies that precursor/immature DC must be able to cross non-activated endothelium using as yet unknown mechanisms. Here we show that immature, but not mature bone marrow-derived murine DC migrate across resting endothelial monolayers in vitro. We find that endothelial intercellular adhesion molecule-2 (ICAM-2) is a major player in transendothelial migration (TEM) of immature DC, accounting for at least 41% of TEM. Surprisingly, the ICAM-2-mediated TEM was independent of beta2-integrins, the known ICAM-2 ligands, since neither blocking of beta2-integrins with antibodies nor the use of CD18-deficient DC affected the ICAM-2-specific TEM. In humans, the C-type lectin DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN) was shown to interact with ICAM-2, suggesting a similar role in mice. However, we find that none of the murine DC-SIGN homologues mDC-SIGN, murine DC-SIGN-related molecule-1 (mSIGN-R1) and mSIGN-R3 is expressed on the surface of bone marrow-derived mouse DC. Taken together, this study shows that ICAM-2 strongly supports transmigration of immature DC across resting endothelium by interacting with ligands that are distinct from beta2-integrins and DC-SIGN homologues.
Resumo:
The intestinal protozoan parasite Giardia lamblia causes diarrhoea in humans and animals. In the present study, we used the C57BL/6 inbred mouse model to assess the impact of a nematode (Trichinella spiralis) infection on the course of a G. lamblia (clone GS/M-83-H7) infection. Acute trichinellosis coincided with transient intestinal inflammation and generated an intestinal environment that strongly promoted growth of G. lamblia trophozoites although the local anti-Giardia immunoglobulin (Ig) A production was not affected. This increased G. lamblia infection intensity correlated with intestinal mast cell infiltration, mast cell degranulation, and total IgE production. Furthermore, a G. lamblia single-infection investigated in parallel also resulted in intestinal mast cell accumulation but severe infiltration was triggered in the absence of IgE. Recently, intestinal mast cells emerging during a G. lamblia infection were reported to be involved in those immunological mechanisms that control intestinal proliferation of the parasite in mice. This anti-giardial activity was assumed to be related to the capacity of mast cells to produce IL-6. However, this previous assumption was questioned by our present immunohistological findings indicating that murine intestinal mast cells, activated during a G. lamblia infection were IL-6-negative. In the present co-infection experiments, mast cells induced during acute trichinellosis were not able to control a concurrent G. lamblia infection. This observation makes it feasible that the T. spiralis infection created an immunological and physiological environment that superimposed the anti-giardial effect of mast cells and thus favoured intestinal growth of G. lamblia trophozoites in double-infected mice. Furthermore, our findings raise the possibility that intestinal inflammation e.g. as a consequence of a 'pre-existing' nematode infection is a factor which contributes to increased susceptibility of a host to a G. lamblia infection. The phenomenon of a 'pre-existing' nematode infection prior to a G. lamblia infection is a frequent constellation in endemic areas of giardiasis and may therefore have a direct impact on the epidemiological situation of the disease.
Resumo:
We describe a hitherto undocumented variant of dimorphic pituitary neoplasm composed of an admixture of neurosecretory cells and profuse leiomyomatous stroma around intratumoral vessels. Radiologically perceived as a macroadenoma of 3.8 cm in diameter, this pituitary mass developed in an otherwise healthy 43-year-old female. At the term of a yearlong history of amenorrhea and progressive bitemporal visual loss, subtotal resection was performed via transsphenoidal microsurgery. Discounting mild hyperprolactinemia, there was no evidence of excess hormone production. Histologically, solid sheets, nests and cords of epithelial-looking, yet cytokeratin-negative cells were seen growing in a richly vascularized stroma of spindle cells. While strong immunoreactivity for NCAM, Synaptophysin and Chromogranin-A was detected in the former, the latter showed both morphological and immunophenotypic hallmarks of smooth muscle, being positive for vimentin, muscle actin and smooth muscle actin. Architectural patterns varied from monomorphous stroma-dominant zones through biphasic neuroendocrine-leiomyomatous areas, to pseudopapillary fronds along vascular cores. Only endothelia were labeled with CD34. Staining for S100 protein and GFAP, characteristics of sustentacular cells, as well as bcl-2 and c-kit was absent. Except for alpha-subunit, anterior pituitary hormones tested negative in tumor cells, as did a panel of peripheral endocrine markers, including serotonin, somatostatin, calcitonin, parathormone and vasoactive intestinal polypeptide. Mitotic activity was absent and the MIB-1 labeling index low (1-2%). While assignment of this lesion to any established neoplastic entity is not forthcoming, we propose it is being considered as a low-grade neuroendocrine tumor possibly related to null cell adenoma.
Resumo:
Silent corticotroph adenomas (SCA) are rare pituitary tumors with histologic hallmarks of corticotroph differentiation, including ACTH immunoreactivity, but lacking clinical evidence of Cushing's syndrome. We report on four female patients, aged 19-66 years, each presenting with a nonfunctional macroadenoma. Leading symptoms were headache in two cases and visual field deficits in one. One patient was incidentally diagnosed while undergoing cranial MRI for an unrelated condition. Three patients had marked obesity; none of them presented constitutional signs of Cushing's syndrome. Serum cortisol levels were moderately elevated in the two patients systematically tested in this respect. Marginal to moderate hyperprolactinemia was present in two cases. Two patients also were shown to be deficient in either gonadotroph or thyrotroph axis, while a third had a combined insufficiency of both gonadotroph and thyrotroph axis. MRI scans revealed intratumoral hemorrhage and/or cystic change in three cases, as well as tumor-related occlusive hydrocephalus in one. The latter patient was biopsied only, while the remaining underwent gross total resection. Histologically, all four lesions were diagnosed as SCA subtype I displaying intense immunoreactivity for ACTH. In three tumors, scattered cells coexpressed PRL as well. In addition, Crooke's hyaline change was noted in a significant number of tumor cells and in residual non-neoplastic corticotrophs in one case each. With MIB-1 labeling indices of 1-3%, none of the tumors qualified as atypical adenoma. We conclude that SCAs are more likely to be discovered as expansile tumors, whose advanced local space-occupying character at surgery rather than an inherently aggressive growth potential may negatively influence the clinical outcome. Subtle morphologic evidence of corticotroph suppression in residual pituitary adjacent to tumor lends further support to literature data indicating minimal or intermittent functional activity in this tumor type.
Resumo:
In the development of microsurgical mouse models of hepatic regeneration and repair, lobe-specific regenerative responses were observed. We therefore determined the hepatic regenerative capacity of individual mouse liver lobes. In mice, 26, 60, 75, and 83% of total liver mass was resected. Bromo-deoxyuridine (BrdU) was injected prior to liver harvest and the BrdU labeling index determined in all remaining individual liver lobes. BrdU-positive nuclei were seen in all liver lobes after the 26 and 60% resection, but significantly fewer were detected in the caudate lobe. In the 75% group, equally distributed positive nuclei were found. However, BrdU labeling was scant in the 83% group. In microsurgical mouse liver-regeneration models, the average hepatic response depends on amount of liver tissue resected and on the remaining liver lobe. BrdU incorporation can vary significantly among individual lobes. The lobe-specific differences observed may prove valuable in further investigations of hepatic regeneration and repair.
Resumo:
To report a rare side effect of gamma knife treatment of pituitary macroadenoma.
Resumo:
Novel magnetic resonance imaging sequences have and still continue to play an increasing role in neuroimaging and neuroscience. Among these techniques, diffusion-weighted imaging (DWI) has revolutionized the diagnosis and management of diseases such as stroke, neoplastic disease and inflammation. However, the effects of aging on diffusion are yet to be determined. To establish reference values for future experimental mouse studies we tested the hypothesis that absolute apparent diffusion coefficients (ADC) of the normal brain change with age. A total of 41 healthy mice were examined by T2-weighted imaging and DWI. For each animal ADC frequency histograms (i) of the whole brain were calculated on a voxel-by-voxel basis and region-of-interest (ROI) measurements (ii) performed and related to the animals' age. The mean entire brain ADC of mice <3 months was 0.715(+/-0.016) x 10(-3) mm2/s, no significant difference to mice aged 4 to 5 months (0.736(+/-0.040) x 10(-3) mm2/s) or animals older than 9 months 0.736(+/-0.020) x 10(-3) mm2/s. Mean whole brain ADCs showed a trend towards lower values with aging but both methods (i + ii) did not reveal a significant correlation with age. ROI measurements in predefined areas: 0.723(+/-0.057) x 10(-3) mm2/s in the parietal lobe, 0.659(+/-0.037) x 10(-3) mm2/s in the striatum and 0.679(+/-0.056) x 10(-3) mm2/s in the temporal lobe. With advancing age, we observed minimal diffusion changes in the whole mouse brain as well as in three ROIs by determination of ADCs. According to our data ADCs remain nearly constant during the aging process of the brain with a small but statistically non-significant trend towards a decreased diffusion in older animals.
Resumo:
Excessive erythrocytosis results in severely increased blood viscosity, which may have significant detrimental effects on endothelial cells and, ultimately, function of the vascular endothelium. Because blood-brain barrier stability is crucial for normal physiological function, we used our previously characterized erythropoietin-overexpressing transgenic (tg6) mouse line (which has a hematocrit of 0.8-0.9) to investigate the effect of excessive erythrocytosis on vessel number, structure, and integrity in vivo. These mice have abnormally high levels of nitric oxide (NO), a potent proinflammatory molecule, suggesting altered vascular permeability and function. In this study, we observed that brain vessel density of tg6 mice was significantly reduced (16%) and vessel diameter was significantly increased (15%) compared with wild-type mice. Although no significant increases in vascular permeability under normoxic or acute hypoxic conditions (8% O2 for 4 h) were detected, electron-microscopic analysis revealed altered morphological characteristics of the tg6 endothelium. Tg6 brain vascular endothelial cells appeared to be activated, with increased luminal protrusions reminiscent of ongoing inflammatory processes. Consistent with this observation, we detected increased levels of intercellular adhesion molecule-1 and von Willebrand factor, markers of endothelial activation and damage, in brain tissue. We propose that chronic excessive erythrocytosis and sustained high hematocrit cause endothelial damage, which may, ultimately, increase susceptibility to vascular disease.
Resumo:
Stem cell regeneration of damaged tissue has recently been reported in many different organs. Since the loss of retinal pigment epithelium (RPE) in the eye is associated with a major cause of visual loss - specifically, age-related macular degeneration - we investigated whether hematopoietic stem cells (HSC) given systemically can home to the damaged subretinal space and express markers of RPE lineage. Green fluorescent protein (GFP) cells of bone marrow origin were used in a sodium iodate (NaIO(3)) model of RPE damage in the mouse. The optimal time for adoptive transfer of bone marrow-derived stem cells relative to the time of injury and the optimal cell type [whole bone marrow, mobilized peripheral blood, HSC, facilitating cells (FC)] were determined by counting the number of GFP(+) cells in whole eye flat mounts. Immunocytochemistry was performed to identify the bone marrow origin of the cells in the RPE using antibodies for CD45, Sca-1, and c-kit, as well as the expression of the RPE-specific marker, RPE-65. The time at which bone marrow-derived cells were adoptively transferred relative to the time of NaIO(3) injection did not significantly influence the number of cells that homed to the subretinal space. At both one and two weeks after intravenous (i.v.) injection, GFP(+) cells of bone marrow origin were observed in the damaged subretinal space, at sites of RPE loss, but not in the normal subretinal space. The combined transplantation of HSC+FC cells appeared to favor the survival of the homed stem cells at two weeks, and RPE-65 was expressed by adoptively transferred HSC by four weeks. We have shown that systemically injected HSC homed to the subretinal space in the presence of RPE damage and that FC promoted survival of these cells. Furthermore, the RPE-specific marker RPE-65 was expressed on adoptively transferred HSC in the denuded areas.