936 resultados para microwave heating


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a new Bayesian approach to retrieve oceanic rain rate from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), with an emphasis on typhoon cases in the West Pacific. Retrieved rain rates are validated with measurements of rain gauges located on Japanese islands. To demonstrate improvement, retrievals are also compared with those from the TRMM/Precipitation Radar (PR), the Goddard Profiling Algorithm (GPROF), and a multi-channel linear regression statistical method (MLRS). We have found that qualitatively, all methods retrieved similar horizontal distributions in terms of locations of eyes and rain bands of typhoons. Quantitatively, our new Bayesian retrievals have the best linearity and the smallest root mean square (RMS) error against rain gauge data for 16 typhoon overpasses in 2004. The correlation coefficient and RMS of our retrievals are 0.95 and ~2 mm hr-1, respectively. In particular, at heavy rain rates, our Bayesian retrievals outperform those retrieved from GPROF and MLRS. Overall, the new Bayesian approach accurately retrieves surface rain rate for typhoon cases. Accurate rain rate estimates from this method can be assimilated in models to improve forecast and prevent potential damages in Taiwan during typhoon seasons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the thermal effects on airflow in a street canyon under real heating conditions (due to diurnal solar radiation), a one-way static approach combining an urban canopy model and CFD is proposed in this paper. An urban canopy model was developed to calculate the individual temperatures of surfaces in the street canyon. The calculated surface temperature may be used as a thermal boundary for CFD simulation. The reliability of this model was validated against a field experiment in Harbin, China. Using the coupling calculation method, the wind flow and air exchange process inside an idealized street canyon was studied. The simulation results show that the thermal effect has significant impacts on the transfer process in the street canyon, especially when the approaching wind is weak. Under a real diurnal thermal forcing, the flow structure within the street canyon changes from one primary vortex to two counter-rotating vortices. The change of transfer process, induced by the buoyancy force, was determined by the thermal condition of all surfaces rather than a single one. Key words: thermal effect, street canyon, numerical simulation, transfer process, diurnal heating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the absence of a suitable method for routine analysis of large numbers of natural river water samples for organic nitrogen and phosphorus fractions, a new simultaneous digestion technique was developed, based on a standard persulphate digestion procedure. This allows rapid analysis of river, lake and groundwater samples from a range of environments for total nitrogen and phosphorus. The method was evaluated using a range of organic nitrogen and phosphorus structures tested at low, mid and high range concentrations from 2 to 50 mg l-1 nitrogen and 0.2 to 10 mg l-1 phosphorus. Mean recoveries for nitrogen ranged from 94.5% (2 mg I-1) to 92.7% (50 mg I-1) and for phosphorus were 98.2% (0.2 mg l-1) to 100.2% (10 mg l-1). The method is precise in its ability m reproduce results from replicate digestions, and robust in its ability to handle a variety of natural water samples in the pH range 5-8.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particulate matter generated during the cooking process has been identified as one of the major problems of indoor air quality and indoor environmental health. Reliable assessment of exposure to cooking-generated particles requires accurate information of emission characteristics especially the size distribution. This study characterizes the volume/mass-based size distribution of the fume particles at the oil-heating stage for the typical Chinese-style cooking in a laboratory kitchen. A laser-diffraction size analyzer is applied to measure the volume frequency of fume particles ranged from 0.1 to 10 μm, which contribute to most mass proportion in PM2.5 and PM10. Measurements show that particle emissions have little dependence on the types of vegetable oil used but have a close relationship with the heating temperature. It is found that volume frequency of fume particles in the range of 1.0–4.0 μm accounts for nearly 100% of PM0.1–10 with the mode diameter 2.7 μm, median diameter 2.6 μm, Sauter mean diameter 3.0 μm, DeBroukere mean diameter 3.2 μm, and distribution span 0.48. Such information on emission characteristics obtained in this study can be possibly used to improve the assessment of indoor air quality due to PM0.1–10 in the kitchen and residential flat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of the attribution of past and future changes in stratospheric ozone and temperature to anthropogenic forcings is presented. The analysis is an extension of the study of Shepherd and Jonsson (2008) who analyzed chemistry-climate simulations from the Canadian Middle Atmosphere Model (CMAM) and attributed both past and future changes to changes in the external forcings, i.e. the abundances of ozone-depleting substances (ODS) and well-mixed greenhouse gases. The current study is based on a new CMAM dataset and includes two important changes. First, we account for the nonlinear radiative response to changes in CO2. It is shown that over centennial time scales the radiative response in the upper stratosphere to CO2 changes is significantly nonlinear and that failure to account for this effect leads to a significant error in the attribution. To our knowledge this nonlinearity has not been considered before in attribution analysis, including multiple linear regression studies. For the regression analysis presented here the nonlinearity was taken into account by using CO2 heating rate, rather than CO2 abundance, as the explanatory variable. This approach yields considerable corrections to the results of the previous study and can be recommended to other researchers. Second, an error in the way the CO2 forcing changes are implemented in the CMAM was corrected, which significantly affects the results for the recent past. As the radiation scheme, based on Fomichev et al. (1998), is used in several other models we provide some description of the problem and how it was fixed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observational and numerical evidence suggest that variability in the extratropical stratospheric circulation has a demonstrable impact on tropospheric variability on intraseasonal time scales. In this study, it is demonstrated that the amplitude of the observed tropospheric response to vacillations in the stratospheric flow is quantitatively similar to the zonal-mean balanced response to the anomalous wave forcing at stratospheric levels. It is further demonstrated that the persistence of the tropospheric response is consistent with the impact of anomalous diabatic heating in the polar stratosphere as stratospheric temperatures relax to climatology. The results contradict previous studies that suggest that variations in stratospheric wave drag are too weak to account for the attendant changes in the tropospheric flow. However, the results also reveal that stratospheric processes alone cannot account for the observed meridional redistribution of momentum within the troposphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Soil Moisture and Ocean Salinity (SMOS) satellite marks the commencement of dedicated global surface soil moisture missions, and the first mission to make passive microwave observations at L-band. On-orbit calibration is an essential part of the instrument calibration strategy, but on-board beam-filling targets are not practical for such large apertures. Therefore, areas to serve as vicarious calibration targets need to be identified. Such sites can only be identified through field experiments including both in situ and airborne measurements. For this purpose, two field experiments were performed in central Australia. Three areas are studied as follows: 1) Lake Eyre, a typically dry salt lake; 2) Wirrangula Hill, with sparse vegetation and a dense cover of surface rock; and 3) Simpson Desert, characterized by dry sand dunes. Of those sites, only Wirrangula Hill and the Simpson Desert are found to be potentially suitable targets, as they have a spatial variation in brightness temperatures of <4 K under normal conditions. However, some limitations are observed for the Simpson Desert, where a bias of 15 K in vertical and 20 K in horizontal polarization exists between model predictions and observations, suggesting a lack of understanding of the underlying physics in this environment. Subsequent comparison with model predictions indicates a SMOS bias of 5 K in vertical and 11 K in horizontal polarization, and an unbiased root mean square difference of 10 K in both polarizations for Wirrangula Hill. Most importantly, the SMOS observations show that the brightness temperature evolution is dominated by regular seasonal patterns and that precipitation events have only little impact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three methods for intercalibrating humidity sounding channels are compared to assess their merits and demerits. The methods use the following: (1) natural targets (Antarctica and tropical oceans), (2) zonal average brightness temperatures, and (3) simultaneous nadir overpasses (SNOs). Advanced Microwave Sounding Unit-B instruments onboard the polar-orbiting NOAA 15 and NOAA 16 satellites are used as examples. Antarctica is shown to be useful for identifying some of the instrument problems but less promising for intercalibrating humidity sounders due to the large diurnal variations there. Owing to smaller diurnal cycles over tropical oceans, these are found to be a good target for estimating intersatellite biases. Estimated biases are more resistant to diurnal differences when data from ascending and descending passes are combined. Biases estimated from zonal-averaged brightness temperatures show large seasonal and latitude dependence which could have resulted from diurnal cycle aliasing and scene-radiance dependence of the biases. This method may not be the best for channels with significant surface contributions. We have also tested the impact of clouds on the estimated biases and found that it is not significant, at least for tropical ocean estimates. Biases estimated from SNOs are the least influenced by diurnal cycle aliasing and cloud impacts. However, SNOs cover only relatively small part of the dynamic range of observed brightness temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire investigation is a challenging area for the forensic investigator. The aim of this work was to use spectral changes to paint samples to estimate the temperatures to which a paint has been heated. Five paint samples (one clay paint, two car paints, one metallic paint, and one matt emulsion) have been fully characterized by a combination of attenuated total reflectance Fourier transform infrared (ATR-IR), Raman, X-ray fluorescence spectroscopy and powder X-ray diffraction. The thermal decomposition of these paints has been investigated by means of ATR-IR and thermal gravimetric analysis. Clear temperature markers are observed in the ATR-IR spectra namely: loss of m(C = O) band, >300°C; appearance of water bands on cooling, >500°C; alterations to m(Si–O) bands due to dehydration of silicate clays, >700°C; diminution of m(CO3) and d(CO3) modes of CaCO3, >950°C. We suggest the possible use of portable ATR-IR for nondestructive, in situ analysis of paints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Snow provides large seasonal storage of freshwater, and information about the distribution of snow mass as Snow Water Equivalent (SWE) is important for hydrological planning and detecting climate change impacts. Large regional disagreements remain between estimates from reanalyses, remote sensing and modelling. Assimilating passive microwave information improves SWE estimates in many regions but the assimilation must account for how microwave scattering depends on snow stratigraphy. Physical snow models can estimate snow stratigraphy, but users must consider the computational expense of model complexity versus acceptable errors. Using data from the National Aeronautics and Space Administration Cold Land Processes Experiment (NASA CLPX) and the Helsinki University of Technology (HUT) microwave emission model of layered snowpacks, it is shown that simulations of the brightness temperature difference between 19 GHz and 37 GHz vertically polarised microwaves are consistent with Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and Special Sensor Microwave Imager (SSM/I) retrievals once known stratigraphic information is used. Simulated brightness temperature differences for an individual snow profile depend on the provided stratigraphic detail. Relative to a profile defined at the 10 cm resolution of density and temperature measurements, the error introduced by simplification to a single layer of average properties increases approximately linearly with snow mass. If this brightness temperature error is converted into SWE using a traditional retrieval method then it is equivalent to ±13 mm SWE (7% of total) at a depth of 100 cm. This error is reduced to ±5.6 mm SWE (3 % of total) for a two-layer model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extraterrestrial solar spectrum (ESS) is an important component in near infrared (near-IR) radiative transfer calculations. However, the impact of a particular choice of the ESS in these regions has been given very little attention. A line-by-line (LBL) transfer model has been used to calculate the absorbed solar irradiance and solar heating rates in the near-IR from 2000-10000 cm−1(1-5 μm) using different ESS. For overhead sun conditions in a mid-latitude summer atmosphere, the absorbed irradiances could differ by up to about 11 Wm−2 (8.2%) while the tropospheric and stratospheric heating rates could differ by up to about 0.13 K day−1 (8.1%) and 0.19 K day−1 (7.6%). The spectral shape of the ESS also has a small but non-negligible impact on these factors in the near-IR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present observations of a poleward propagating substorm-disturbed region which was observed by the European Incoherent SCATter (EISCAT) radar and the Svalbard International Monitor for Auroral Geomagnetic Effects (IMAGE) magnetometers in the postmidnight sector. The expansion of the disturbance was launched by a substorm intensification which started similar to 25 min after the initial onset, and similar to 10 min before the disturbance arrived over Svalbard. In association with the magnetic disturbance, a poleward expanding enduring enhancement in the F region electron temperature was observed, indicative of soft electron precipitation, with a narrow band of enhanced ion temperature straddling its poleward edge, indicative of fast ion flows and ion-neutral collisional heating. This electron temperature boundary was coincident with the poleward propagating electrojet current system detected by the high-latitude IMAGE magnetometer stations and is taken to be a proxy for the observation of a substorm auroral bulge. The electron temperature boundary is inferred to have a width comparable or less than one radar range gate (similar to 60 km transverse to the magnetic field), while the region of high ion temperature was found to be approximately three gates wide, extending approximately two gates (similar to 120 km) poleward of the electron temperature boundary, and approximately one gate (similar to 60 km) equatorward. The two-beam radar line-of-sight velocity data are found to be consistent with the existence of a layer of high-speed flow in the boundary, peaking at values similar to1.5-3 km s(-1), roughly consistent with the ion temperature data. The flow is directed either east or west along the boundary depending on the direction of the flow in the poleward region. We infer that the flow is deflected along and around the boundary of the substorm-disturbed region due to the high conductivity of the latter. Variations in the flow poleward of the boundary produced no discernible magnetic effects on the ground, confirming the low conductivity of the preboundary ionosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper complements that in this issue by Clauer et al. concerning the international GISMOS campaign of 3–5 June 1987. From a detailed study of the EISCAT data, the polar-cap boundary, as defined by an almost shear east-west convection reversal, is found to contract across the EISCAT field of view between 04 and 07 MLT. An annulus of enhanced ion temperature and non-thermal plasma is observed immediately equatorward of the contracting boundary due to the lag in the response of the neutral-wind pattern to the change in ion flows. The ion flow inside the polar cap and at the boundary is shown to be relatively smooth, compared with that in the auroral oval, at 15-second resolution. The flow at the boundary is directed poleward, with velocities which exceed that of the boundary itself. The effect of velocity shears on the beamswinging technique used to derive the ion flows has been analysed in detail and it is found that spurious flows across a moving boundary can be generated. However, these are much smaller than the observed flows into the polar cap and cannot explain the 7 kV potential difference across the observed segment of the cap boundary between 04:30–06:30 UT. The ion temperature enhancements at the two observing azimuths is used to define the boundary orientation. The results are consistent with recent observations of slow anti-sunward flow of closed field lines on the flanks of the geomagnetic tail, which appears to be generated by some form of “viscous” coupling to the magnetosheath plasma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data recorded by the POLAR experiment run on the EISCAT radar during the international GISMOS campaign of 3–5 June 1987 are studied in detail. The polar-cap boundary, as denned by an almost shear East-West convection reversal, was observed to jump southward across the EISCAT field of view in two steps at 02:00 and 03:00 Magnetic Local Time and subsequently to contract back between 04:00 and 07:00 M.L.T. An annulus of enhanced ion temperature and non-thermal plasma was observed immediately equatorward of the contracting boundary due to the lag in the response of the neutral-wind pattern to the change in ion flows. The ion flow at the boundary is shown to be relatively smooth at 15 s resolution and directed northward, with velocities which exceed that of the boundary itself. The effect of velocity shears on the beamswinging technique used to derive the ion flows is analyzed in detail and it is shown that, for certain orientations of the cap boundary, spurious flows into the cap can be generated. However, these are much smaller than the observed flows into the polar cap and cannot explain the potential difference across the observed segment of the cap boundary (extending over 2 h of M.L.T.) which is roughly 7 kV. Similarly, an observed slowing of the zonal flow near the boundary cannot be explained as an error introduced by the use of the beamswinging technique. The results could be interpreted as being due to reconnection occurring on the dawn flank of the magnetopause (mapping to the polar cap at 04:30 06:30 M.L.T.). However, they are more consistent with recent observations of slow anti-sunward flow of closed field lines on the flanks of the geomagnetic tail, which appears to be generated by some form of “viscous” coupling to the magnetosheath plasma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many theories for the Madden-Julian oscillation (MJO) focus on diabatic processes, particularly the evolution of vertical heating and moistening. Poor MJO performance in weather and climate models is often blamed on biases in these processes and their interactions with the large-scale circulation. We introduce one of three components of a model-evaluation project, which aims to connect MJO fidelity in models to their representations of several physical processes, focusing on diabatic heating and moistening. This component consists of 20-day hindcasts, initialised daily during two MJO events in winter 2009-10. The 13 models exhibit a range of skill: several have accurate forecasts to 20 days' lead, while others perform similarly to statistical models (8-11 days). Models that maintain the observed MJO amplitude accurately predict propagation, but not vice versa. We find no link between hindcast fidelity and the precipitation-moisture relationship, in contrast to other recent studies. There is also no relationship between models' performance and the evolution of their diabatic-heating profiles with rain rate. A more robust association emerges between models' fidelity and net moistening: the highest-skill models show a clear transition from low-level moistening for light rainfall to mid-level moistening at moderate rainfall and upper-level moistening for heavy rainfall. The mid-level moistening, arising from both dynamics and physics, may be most important. Accurately representing many processes may be necessary, but not sufficient for capturing the MJO, which suggests that models fail to predict the MJO for a broad range of reasons and limits the possibility of finding a panacea.