996 resultados para microwave degradation
Resumo:
Alpha polyesters such as poly(L-lactide) and poly(glycolide) are biodegradable materials used in fracture fixation and they need to be assessed for problems associated with their degradation products. This study has compared cell responses to low molecular weight poly(L-lactide) particles, lactate monomer, poly(glycolide) particles and glycolic acid at cytotoxic and sub-cytotoxic concentrations. Murine macrophages were cultured in vitro and the release of lactate dehydrogenase (LDH), prostaglandin E-2 (PGE(2)) and interleukin-1 alpha IL-1alpha was measured following the addition of particles or monomer. Experiments revealed that both the poly(L-lactide) and poly(glycolide) particles gave rise to dose dependent increases in LDH release and an increase in IL-1alpha and PGE(2) release. Comparisons of the poly(L-lactide) particles to the poly(glycolide) particles did not reveal any differences in their stimulation of LDH, IL-1alpha and PGE(2) release. The lactate and glycolate monomers did not increase PGE(2) or IL-1alpha release above control levels. There was no difference in biocompatibility between the poly(L-lactide) and poly(glycolide) degradation products both in particulate and monomeric form. (C) 2003 Kluwer Academic Publishers.
Resumo:
Bioresorbable polymers such as polylactide (PIA) and polylactide-co-glycolide (PLGA) have been used successfully as biomaterials in a wide range of medical applications. However, their slow degradation rates and propensity to lose strength before mass have caused problems. A central challenge for the development of these materials is the assurance of consistent and predictable in vivo degradation. Previous work has illustrated the potential to influence polymer degradation using electron beam (e-beam) radiation. The work addressed in this paper investigates further the utilisation of e-beam radiation in order to achieve a more surface specific effect. Variation of e-beam energy was studied as a means to control the effective penetrative depth in poly-L-lactide (PLEA). PLEA samples were exposed to e-beam radiation at individual energies of 0.5 MeV, 0.75 MeV and 1.5 MeV. The near-surface region of the PLEA samples was shown to be affected by e-beam irradiation with induced changes in molecular weight, morphology, flexural strength and degradation profile. Moreover, the depth to which the physical properties of the polymer were affected is dependent on the beam energy used. Computer modelling of the transmission of each e-beam energy level used corresponded well with these findings. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Nanocrystalline Ni0.5Zn0.5Fe2O4 thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology, magnetic, and microwave absorption properties of the films calcined in the 673-1073 K range were studied with x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, vibrating sample magnetometry, and evanescent microwave microscopy. All films were uniform without microcracks. Increasing the calcination temperature from 873 to 1073 K and time from 1 to 3 h resulted in an increase of the grain size from 12 to 27 nm. The saturation and remnant magnetization increased with increasing the grain size, while the coercivity demonstrated a maximum near a critical grain size of 21 nm due to the transition from monodomain to multidomain behavior. The complex permittivity of the Ni-Zn ferrite films was measured in the frequency range of 2-15 GHz. The heating behavior was studied in a multimode microwave cavity at 2.4 GHz. The highest microwave heating rate in the temperature range of 315-355 K was observed in the film close to the critical grain size.
Helminth Cysteine Proteases Inhibit TRIF-dependent Activation of Macrophages via Degradation of TLR3
Resumo:
Helminth pathogens prepare a Th2 type immunological environment in their hosts to ensure their longevity. They achieve this by secreting molecules that not only actively drive type 2 responses but also suppress type 1 responses. Here, we show that the major cysteine proteases secreted from the helminth pathogens Fasciola hepatica (FheCL1) and Schistosoma mansoni (SmCB1) protect mice from the lethal effects of lipopolysaccharide by preventing the release of inflammatory mediators, nitric oxide, interleukin-6, tumor necrosis factor alpha, and interleukin-12, from macrophages. The proteases specifically block the MyD88-independent TRIF-dependent signaling pathway of Toll-like receptor (TLR) 4 and TLR3. Microscopical and flow cytometric studies, however, show that alteration of macrophage function by cysteine protease is not mediated by cleavage of components of the TLR4 complex on the cell surface but occurs by degradation of TLR3 within the endosome. This is the first study to describe a parasite molecule that degrades this receptor and pinpoints a novel mechanism by which helminth parasites modulate the innate immune responses of their hosts to suppress the development of Th1 responses.
Resumo:
Carbon stable isotope ((13)C) fractionation in chlorofluorocarbon (CFC) compounds arising from abiotic (chemical) degradation using zero-valent iron (ZVI) and biotic (landfill gas attenuation) processes is investigated. Batch tests (at 25 °C) for CFC-113 and CFC-11 using ZVI show quantitative degradation of CFC-113 to HCFC-123a and CFC-1113 following pseudo-first-order kinetics corresponding to a half-life (t(1/2)) of 20.5 h, and a ZVI surface-area normalized rate constant (k(SA)) of -(9.8 ± 0.5) × 10(-5) L m(-2) h(-1). CFC-11 degraded to trace HCFC-21 and HCFC-31 following pseudo-first-order kinetics corresponding to t(1/2) = 17.3 h and k(SA) = -(1.2 ± 0.5) × 10(-4) L m(-2) h(-1). Significant kinetic isotope effects of e(‰) = -5.0 ± 0.3 (CFC-113) and -17.8 ± 4.8 (CFC-11) were observed. Compound-specific carbon isotope analyses also have been used here to characterize source signatures of CFC gases (HCFC-22, CFC-12, HFC-134a, HCFC-142b, CFC-114, CFC-11, CFC-113) for urban (UAA), rural/remote (RAA), and landfill (LAA) ambient air samples, as well as in situ surface flux chamber (FLUX; NO FLUX) and landfill gas (LFG) samples at the Dargan Road site, Northern Ireland. The latter values reflect biotic degradation and isotopic fractionation in LFG production, and local atmospheric impact of landfill emissions through the cover. Isotopic fractionations of ?(13)C ~ -13‰ (HCFC-22), ?(13)C ~ -35‰ (CFC-12) and ?(13)C ~ -15‰ (CFC-11) were observed for LFG in comparison to characteristic solvent source signatures, with the magnitude of the isotopic effect for CFC-11 apparently similar to the kinetic isotope effect for (abiotic) ZVI degradation.
Resumo:
The results of recent laboratory studies of the reactions of H+ and H-3+ with a number of molecular gases are interpreted from the viewpoint of interstellar chemistry. Many of the reactions of these ions result in the ionization and fragmentation of neutral reactant gases. Pseudo-time-dependent calculations of the chemistry in dense molecular clouds indicate that molecular abundances are reduced by the inclusion of such reactions, but generally by less than a factor of 5.
Resumo:
Variation in the natural abundance stable carbon isotope composition of respired CO2 and biomass has been measured for two types of aerobic bacteria found in contaminated land sites. Pseudomonas putida strain NCIMB 10015 was cultured on phenol and benzoate and Rhodococcus sp. I-1 was cultured on phenol. Results indicate that aerobic isotope fractionations of differing magnitudes occur during aerobic biodegradation of these substrates with an isotopic depletion in the CO2 (Delta(13)C(phenol-CO2)) as much as 3.7 parts per thousand and 5.6 parts per thousand for Pseudomonas putida and Rhodococcus sp. I-1 respectively. This observation has significant implications for the use of a stable isotope mass balance approach in monitoring degradation processes that rely on indigenous bacterial populations. The effects of the metabolic pathway utilised in degradation and inter-species variation on the magnitude of isotope fractionation are discussed. Possible explanations for the observed isotope fractionation include differences in the metabolic pathways utilised by the organisms and differences in specific growth rates and physiology. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The reaction of 1-butylpyrrolidine with dimethyl carbonate to yield the ionic liquid precursor, 1-butyl-1-methylpyrrolidinium methylcarbonate, has been investigated under microwave heating conditions and the reaction parameters optimised to achieve 100% yield of the pyrrolidinium salt with no by-products in under 1 h. The reactions of tributylamine, trioctylphosphine, and 1-butylimidazole with dimethyl carbonate under comparable conditions have also been evaluated, yielding the corresponding methylcarbonate salts which can be used as intermediates for the preparation of halide-free ionic liquids without generating any undesirable salt wastes.
Resumo:
A microwave reactor system was investigated as a potential technique to maximize sugar yield for the hydrolysis of municipal solid waste for ethanol production. Specifically, dilute acid hydrolysis of a-cellulose and waste cellulosic biomass (grass clippings) with phosphoric acid was undertaken within the microwave reactor system. The experimental data and reaction kinetic analysis indicate that the use of a microwave reactor system can successfully facilitate dilute acid hydrolysis of cellulose and waste cellulosic biomass, producing high yields of total sugars in short reaction times. The maximum yield of reducing sugars was obtained at 7.5% (w/v) phosphoric acid and 160 degrees C, corresponding to 60% of the theoretical total sugars, with a reaction time of 5 min. When using a very low acid concentration (0.4% w/v) for the hydrolysis in the microwave reactor, it was found that 10 g of total sugars/100 g dry mass was produced, which is significant considering the low acid concentration. When hydrolyzing grass clippings using the microwave reactor, the optimum conditions were an acid concentration of 2.5% (w/v), 175 degrees C with a 15 min reaction time, giving 18 g/100 g dry mass of total sugars, with xylose being the sugar with the highest yield. It was observed that pentose sugars were more easily formed but also more easily degraded, these being significantly affected by increases in acid concentration and temperature. Kinetic modeling of the data indicated that the use of microwave heating may account for an increase in reaction rate constant, k(1), found in this study in comparison with conventional systems described in the literature.