958 resultados para metal-organic precursors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anaerobic digestion (AD) is a well-established technology used for the treatment of wastes and wastewaters with high organic content. During AD organic matter is converted stepwise to methane-containing biogasa renewable energy carrier. Methane production occurs in the last AD step and relies on methanogens, which are rather sensitive to some contaminants commonly found in wastewaters (e.g. heavy metals), or easily outcompeted by other groups of microorganisms (e.g. sulphate reducing bacteria, SRB). This review gives an overview of previous research and pilot-scale studies that shed some light on the effects of sulphate and heavy metals on methanogenesis. Despite the numerous studies on this subject, comparison is not always possible due to differences in the experimental conditions used and parameters explained. An overview of the possible benefits of methanogens and SRB co-habitation is also covered. Small amounts of sulphide produced by SRB can precipitate with metals, neutralising the negative effects of sulphide accumulation and free heavy metals on methanogenesis. Knowledge on how to untangle and balance sulphate reduction and methanogenesis is crucial to take advantage of the potential for the utilisation of biogenic sulphide as a metal detoxification agent with minimal loss in methane production in anaerobic digesters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of buffers to maintain the pH within a desired range is a very common practice in chemical, biochemical and biological studies. Among them, zwitterionic N-substituted aminosulfonic acids, usually known as Good's buffers, although widely used, can complex metals and interact with biological systems. The present work reviews, discusses and updates the metal complexation characteristics of thirty one commercially available buffers. In addition, their impact on biological systems is also presented. The influences of these buffers on the results obtained in biological, biochemical and environmental studies, with special focus on their interaction with metal ions, are highlighted and critically reviewed. Using chemical speciation simulations, based on the current knowledge of the metal-buffer stability constants, a proposal of the most adequate buffer to employ for a given metal ion is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing interest for greener and biological methods of synthesis has led to the development of non-toxic and comparatively more bioactive nanoparticles. Unlike physical and chemical methods of nanoparticle synthesis, microbial synthesis in general and mycosynthesis in particular is cost-effective and environment-friendly. However, different aspects, such as the rate of synthesis, monodispersity and downstream processing, need to be improved. Many fungal-based mechanisms have been proposed for the formation of silver nanoparticles (AgNPs), mainly those involving the presence of nitrate reductase, which has been detected in filtered fungus cell used for AgNPs production. There is a general acceptance that nitrate reductase is the main responsible for the reduction of Ag ions for the formation of AgNPs. However, this generally accepted mechanism for fungal AgNPs production is not totally understood. In order to elucidate the molecules participating in the mechanistic formation of metal nanoparticles, the current study is focused on the enzymes and other organic compounds involved in the biosynthesis of AgNPs. The use of each free fungal mycelium of both Stereum hirsutum and Fusarium oxysporum will be assessed. In order to identify defective mutants on the nitrate reductase structural gene niaD, fungal cultures of S.hirsutum and F.oxysporum will be selected by chlorate resistance. In addition, in order to verify if each compound identified as key-molecule influenced on the production of nanoparticles, an in vitro assay using different nitrogen sources will be developed. Lately, fungal extracellular enzymes will be measured and an in vitro assay will be done. Finally, The nanoparticle formation and its characterization will be evaluated by UV-visible spectroscopy, electron microscopy (TEM), X-ray diffraction analysis (XRD), Fourier transforms infrared spectroscopy (FTIR), and LC-MS/MS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Printed electronics represent an alternative solution for the manufacturing of low-temperature and large area flexible electronics. The use of inkjet printing is showing major advantages when compared to other established printing technologies such as, gravure, screen or offset printing, allowing the reduction of manufacturing costs due to its efficient material usage and the direct-writing approach without requirement of any masks. However, several technological restrictions for printed electronics can hinder its application potential, e.g. the device stability under atmospheric or even more stringent conditions. Here, we study the influence of specific mechanical, chemical, and temperature treatments usually appearing in manufacturing processes for textiles on the electrical performance of all-inkjet-printed organic thin-film transistors (OTFTs). Therefore, OTFTs where manufactured with silver electrodes, a UV curable dielectric, and 6,13-bis(triisopropylsilylethynyl) pentance (TIPS-pentacene) as the active semiconductor layer. All the layers were deposited using inkjet printing. After electrical characterization of the printed OTFTs, a simple encapsulation method was applied followed by the degradation study allowing a comparison of the electrical performance of treated and not treated OTFTs. Industrial calendering, dyeing, washing and stentering were selected as typical textile processes and treatment methods for the printed OTFTs. It is shown that the all-inkjet-printed OTFTs fabricated in this work are functional after their submission to the textiles processes but with degradation in the electrical performance, exhibiting higher degradation in the OTFTs with shorter channel lengths (L=10 μm).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evaluation of the photorelease of a carboxylic acid drug, using butyric acid as a representative model, was carried out by using 7-amino-4-chloromethyl-2-oxo-2Hnaphtho[1,2-b] pyran, an aminobenzocoumarin, and its mono- and di-methylated or ethylated derivatives. This study was intended to improve the release of butyric acid from benzocoumarins by the addition of an amino group to the heterocycle by applying the knowledge of second-generation coumarinylmethyl-based photoremovable protecting groups. Photolysis studies were performed on the resultant ester cages by irradiation in a photochemical reactor at 254, 300, 350 and 419 nm, using methanol/HEPES buffer 80:20 solutions as solvent. The data obtained showed that these new fluorescent aminobenzocoumarins are superior to all the previously tested benzocoumarins with the same or different ring fusions. As well as the photolysis, the photophysics of the compounds were characterised by both steady state and time-resolved methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During last years, photophysical properties of complexes of semiconductor quantum dots (QDs) with organic dyes have attracted increasing interest. The development of different assemblies based on QDs and organic dyes allows to increase the range of QDs applications, which include imaging, biological sensing and electronic devices.1 Some studies demonstrate energy transfer between QDs and organic dye in assemblies.2 However, for electronic devices purposes, a polymeric matrix is required to enhance QDs photostability. Thus, in order to attach the QDs to the polymer surface it is necessary to chemically modify the polymer to induce electronic charges and stabilize the QDs in the polymer. The present work aims to investigate the design of assemblies based on polymer-coated QDs and an integrated acceptor organic dye. Polymethylmethacrylate (PMMA) and polycarbonate (PC) were used as polymeric matrices, and nile red as acceptor. Additionally, a PMMA matrix modified with 2-mercaptoethylamine is used to improve the attachment between both the donor (QDs) and the acceptor (nile red), as well as to induce a covalent bond between the modified PMMA and the QDs. An enhancement of the energy transfer efficiency by using the modified PMMA is expected and the resulting assembly can be applied for energy harvesting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ion chromatography procedure, employing an IonPac AC15 concentrator column was used to investigate on line preconcentration for the simultaneous determination of inorganic anions and organic acids in river water. Twelve organic acids and nine inorganic anions were separated without any interference from other compounds and carry-over problems between samples. The injection loop was replaced by a Dionex AC15 concentrator column. The proposed procedure employed an auto-sampler that injected 1.5 ml of sample into a KOH mobile phase, generated by an Eluent Generator, at 1.5 mL min-1, which carried the sample to the chromatographic columns (one guard column, model AG-15, and one analytical column, model AS15, with 250 x 4mm i.d.). The gradient elution concentrations consisted of a 10.0 mmol l-1 KOH solution from 0 to 6.5 min, gradually increased to 45.0 mmol l-1 KOH at 21 min., and immediatelly returned and maintained at the initial concentrations until 24 min. of total run. The compounds were eluted and transported to an electro-conductivity detection cell that was attached to an electrochemical detector. The advantage of using concentrator column was the capability of performing routine simultaneous determinations for ions from 0.01 to 1.0 mg l-1 organic acids (acetate, propionic acid, formic acid, butyric acid, glycolic acid, pyruvate, tartaric acid, phthalic acid, methanesulfonic acid, valeric acid, maleic acid, oxalic acid, chlorate and citric acid) and 0.01 to 5.0 mg l-1 inorganic anions (fluoride, chloride, nitrite, nitrate, bromide, sulfate and phosphate), without extensive sample pretreatment and with an analysis time of only 24 minutes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONSPECTUS: Two-dimensional (2D) crystals derived from transition metal dichalcogenides (TMDs) are intriguing materials that offer a unique platform to study fundamental physical phenomena as well as to explore development of novel devices. Semiconducting group 6 TMDs such as MoS2 and WSe2 are known for their large optical absorption coefficient and their potential for high efficiency photovoltaics and photodetectors. Monolayer sheets of these compounds are flexible, stretchable, and soft semiconductors with a direct band gap in contrast to their well-known bulk crystals that are rigid and hard indirect gap semiconductors. Recent intense research has been motivated by the distinct electrical, optical, and mechanical properties of these TMD crystals in the ultimate thickness regime. As a semiconductor with a band gap in the visible to near-IR frequencies, these 2D MX2 materials (M = Mo, W; X = S, Se) exhibit distinct excitonic absorption and emission features. In this Account, we discuss how optical spectroscopy of these materials allows investigation of their electronic properties and the relaxation dynamics of excitons. We first discuss the basic electronic structure of 2D TMDs highlighting the key features of the dispersion relation. With the help of theoretical calculations, we further discuss how photoluminescence energy of direct and indirect excitons provide a guide to understanding the evolution of the electronic structure as a function of the number of layers. We also highlight the behavior of the two competing conduction valleys and their role in the optical processes. Intercalation of group 6 TMDs by alkali metals results in the structural phase transformation with corresponding semiconductor-to-metal transition. Monolayer TMDs obtained by intercalation-assisted exfoliation retains the metastable metallic phase. Mild annealing, however, destabilizes the metastable phase and gradually restores the original semiconducting phase. Interestingly, the semiconducting 2H phase, metallic 1T phase, and a charge-density-wave-like 1T' phase can coexist within a single crystalline monolayer sheet. We further discuss the electronic properties of the restacked films of chemically exfoliated MoS2. Finally, we focus on the strong optical absorption and related exciton relaxation in monolayer and bilayer MX2. Monolayer MX2 absorbs as much as 30% of incident photons in the blue region of the visible light despite being atomically thin. This giant absorption is attributed to nesting of the conduction and valence bands, which leads to diversion of optical conductivity. We describe how the relaxation pathway of excitons depends strongly on the excitation energy. Excitation at the band nesting region is of unique significance because it leads to relaxation of electrons and holes with opposite momentum and spontaneous formation of indirect excitons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Portugal the use of Constructed Wetlands (CW) for wastewater treatment has been increasing. However a number of these facilities need new strategies to achieve better efficiency. Keeping the culms of reeds on the CW beds not always results as desired, but the use of widely available agro-forest wastes, may be suitable as CW support matrix. This study was performed at lab-scale with dried culms of Phragmites and eucalyptus bark maintained in tap water, to assess them as CW substrata. With a 7 days residence time in water, Phragmites culms added a high organic load (about 400 mg L-1 BOD5) to the medium, while the eucalyptus bark added only, about 60 mg L-1 BOD5. However, by lixiviation, the organic load decreased to about 25 mg L-1 BOD5 in 5 weeks. With the organic load reduction of the leachate water, its surface tension increased, approaching the surface tension of tap water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we produce and study the flexible organic–inorganic hybrid moisture barrier layers for the protection of air sensitive organic opto-electronic devices. The inorganic amorphous silicon nitride layer (SiNx:H) and the organic PMMA [poly (methyl methacrylate)] layer are deposited alternatingly by using hot wire chemical vapor deposition (HW-CVD) and spin-coating techniques, respectively. The effect of organic–inorganic hybrid interfaces is analyzed for increasing number of interfaces. We produce highly transparent (∼80% in the visible region) hybrid structures. The morphological properties are analysed providing a good basis for understanding the variation of the water vapor transmission rate (WVTR) values. A minimum WVTR of 4.5 × 10−5g/m2day is reported at the ambient atmospheric conditions for 7 organic/inorganic interfaces. The hybrid barriers show superb mechanical flexibility which confirms their high potential for flexible applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undergraduate medical education is moving from traditional disciplinary basic science courses into more integrated curricula. Integration models based on organ systems originated in the 1950s, but few longitudinal studies have evaluated their effectiveness. This article outlines the development and implementation of the Organic and Functional Systems (OFS) courses at the University of Minho in Portugal, using evidence collected over 10 years. It describes the organization of content, student academic performance and acceptability of the courses, the evaluation of preparedness for future courses and the retention of knowledge on basic sciences. Students consistently rated the OFS courses highly. Physician tutors in subsequent clinical attachments considered that students were appropriately prepared. Performance in the International Foundations of Medicine examination of a self-selected sample of students revealed similar performances in basic science items after the last OFS course and 4 years later, at the moment of graduation. In conclusion, the organizational and pedagogical approaches of the OFS courses achieve high acceptability by students and result in positive outcomes in terms of preparedness for subsequent training and long-term retention of basic science knowledge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Partition behavior of adenosine and guanine mononucleotides was examined in aqueous dextran-polyethylene glycol (PEG) and PEG-sodium sulfate two-phase systems. The partition coefficients for each series of mononucleotides were analyzed as a functions of the number of phosphate groups and found to be dependent on the nature of nucleic base and on the type of \ATPS\ utilized. It was concluded that an average contribution of a phosphate group into logarithm of partition coefficient of a mononucleotide cannot be used to estimate the difference between the electrostatic properties of the coexisting phases of ATPS. The data obtained in this study were considered together with those for other organic compounds and proteins reported previously, and the linear interrelationship between logarithms of partition coefficients in dextran-PEG, PEG-Na2SO4 and PEG-Na2SO4-0.215 M NaCl (all in 0.01 M Na- or K/Na-phosphate buffer, pH 7.4 or 6.8) was established. Similar relationship was found for the previously reported data for proteins in Dex-PEG, PEG-600-Na2SO4, and PEG-8000-Na2SO4 ATPS. It is suggested that the linear relationships of the kind established in \ATPS\ may be observed for biological properties of compounds as well.