956 resultados para medial prefrontal cortex
Resumo:
Pathological inattention following parietal damage causes perceptual impairments for visual stimuli in the contralesional hemifield. Here we used functional magnetic resonance imaging (fMRI) to examine visual cortex activity in parietal patients as they performed a spatial attention task. Righthemisphere patients and healthy controls viewed counterphasing checkerboards in which coloured targets appeared briefly within the contralesional and ipsilesional hemifields. In separate fMRI runs participants focused their attention covertiy on the left or right hemifield, or on both hemifields concurrentiy. They were required to detect coloured targets that appeared briefly within the attended hemifield(s), and to withhold responses to distractor stimuli. Neural activit}' was significantly attenuated in early visual areas within the damaged hemisphere. Crucially, although attention significantiy modulated early visual activit}' within the intact (left) hemisphere, there was relatively littie modulation of activity within the affected hemisphere. Our findings suggest that parietal lesions alter early cortical responses to contralesional visual inputs.
Resumo:
Motor cortex stimulation oriented by functional cortical mapping is used mainly for treating otherwise intractable neurological disorders, however. its mechanism of action remains elusive. Herein, we present a new method for functional mapping of the rat motor cortex using non-invasive transdural electrical stimulation. This method allows a non-invasive mapping of the surface of the neocortex providing a differentiation of representative motor areas. This Study may facilitate further investigation about the mechanisms mediating the effects of electrical stimulation, possibly benefiting patients who do not respond to this neuromodulation therapy. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Epidural motor cortex stimulation (MCS) has been used for treating patients with neuropathic pain resistant to other therapeutic approaches. Experimental evidence suggests that the motor cortex is also involved in the modulation of normal nociceptive response, but the underlying mechanisms of pain control have not been clarified yet. The aim of this study was to investigate the effects of epidural electrical MCS on the nociceptive threshold of naive rats. Electrodes were placed on epidural motor cortex, over the hind paw area, according to the functional mapping accomplished in this study. Nociceptive threshold and general activity were evaluated under 15-min electrical stimulating sessions. When rats were evaluated by the paw pressure test, MCS induced selective antinociception in the paw contralateral to the stimulated cortex, but no changes were noticed in the ipsilateral paw. When the nociceptive test was repeated 15 min after cessation of electrical stimulation, the nociceptive threshold returned to basal levels. On the other hand, no changes in the nociceptive threshold were observed in rats evaluated by the tail-flick test. Additionally, no behavioral or motor impairment were noticed in the course of stimulation session at the open-field test. Stimulation of posterior parietal or somatosensory cortices did not elicit any changes in the general activity or nociceptive response. Opioid receptors blockade by naloxone abolished the increase in nociceptive threshold induced by MCS. Data shown herein demonstrate that epidural electrical MCS elicits a substantial and selective antinociceptive effect, which is mediated by opioids. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Telecanthus, the lateral displacement of the medial canthus, can be a congenital deformity or can occur after facial trauma or tumor resection. Treatment of telecanthus remains a challenge for plastic surgeons. For proper correction, it is necessary to shift the medial canthus medially, fixing its tendon to the bone. The ideal technique would allow easy, safe, and stable fixation of the tendon, permit a unilateral approach with minimal incisions, and be cost-effective. The purpose of this study was to evaluate the feasibility and results (immediate and long-term) of medial telecanthus repair using ipsilateral titanium microanchor fixation. Nine patients, 7 with unilateral telecanthus and 2 with bilateral telecanthus, underwent ipsilateral canthopexy involving a microanchor device. Anthropometric measurements of the orbital regions were taken before, immediately after, and at 1 year after surgery. Data for the affected sides were compared with those for the unaffected sides, and the evolution of those values was assessed throughout the 1-year follow-up period. For all patients, the final values were lower than those initially obtained. At 1 year after surgery, the intercanthal distance was reduced to age-adjusted normal values in all cases. On the operated side, stable improvement was observed in terms of the distance from the medial canthus to the midline, although some degree of recurrence was noted in most of the patients. The use of a microanchor system for medial canthopexy can be considered an easily performed and effective option for treating canthal dystopia, especially when an ipsilateral approach is preferred.
Resumo:
Background There are multitudes of procedures in plastic surgery used to correct hypertrophic and pendulous breasts in patients with heavy and ptotic breasts who need great resections of breast tissue, where the suprasternal notch-to-nipple distance is long and the use of nipple-areola transposition techniques is a challenge for the plastic surgeon. The purpose of this study is to present a technique of reduction mammaplasty that could solve these problems based on the following principles: mammary reduction utilizing a thin superior medial pedicle (0.8-1.5 cm thick) and the resection performed in two steps: (1) the base excess at a plane perpendicular to the breast (this determines the cone`s height) and (2) central half keel (this determines the breast diameter reduction). Methods Ninety patients with mammary hypertrophy were operated on at the ""Hospital das Clinicas,"" Sao Paulo University Medical School, between January 2000 and November 2005. Inclusion in this study required a minimum of 12-cm change in nipple position and a 750-g breast resection. Results The mean change in nipple position was 16 cm (range = 12-21 cm). The mean weight of each breast was 1400 (range = 750-3000 g).Considering the great amount of volume removed and the size of the operated breasts, few complications were observed and were similar to those reported following other techniques described in the literature. Patient satisfaction following this procedure was high. Conclusion The results of this study clearly demonstrate that thin superior medial pedicle reduction mammaplasty is a safe and reliable technique in cases of severe mammary hypertrophy.
Resumo:
Objective. To assess the efficacy of medial-wedge insoles in valgus knee osteoarthritis (OA). Methods. Thirty consecutive women with valgus-deformity knee OA a:8 degrees were randomized into 2 groups: medial insole (insoles with B-mm medial elevation at the rearfoot [n = 161) and neutral insole (similar insole without elevation [n = 14]). Both groups also wore ankle supports. A blinded examiner assessed pain on movement, at rest, and at night with a visual analog scale (VAS), the Lequesne index., and Western Ontario and McMaster Universities Osteoarthritis (WOMAC) Index. Femorotibial, talocalcaneal, and talar tilt angles were evaluated at baseline and after 8 weeks of insole use. Results. Significant reductions in the medial insole group were observed for pain on movement (mean +/- SD VAS pre- and postintervention 8.1 +/- 1.5 versus 1 4.2 +/- 2.4; P = 0.001), at rest (5.1 +/- 2.3 versus 2.7 +/- 2.4; P = 0.002), and at night (6.1 +/- 2.7 versus 3.1 +/- 2.1; P = 0.001). In addition, a decrease in Lequesne (14.7 +/- 3.4 versus 9.6 +/- 3.8; P = 0.001) and WOMAC scores (74.1 +/- 14.2 versus 56.1 +/- 14.9; P = 0.001) was observed for the medial insole group. In the neutral insole group, a significant reduction was observed only for night pain (mean SD VAS pre- and postintervention 5.8 +/- 2.4 versus 4.6 +/- 2.4; P = 0.019). An increase in femorotibial angle (169.0 +/- 3.4 versus 170.8 +/- 2.4; P = 0.019). An increase in femorotibial angle (169.0 +/- 3.4 versus 170.8 +/- 3.7; P = 0.001) occurred only in the medial 3.7; P = 0.001) occurred only in the medial insole group. Moreover, the difference in measured fernorotibial angles pre- and postintervention was 1.84 +/- 1.42 versus -0.18 +/- 0.67 (P < 0.001) for the medial and neutral insole groups. Conclusion. The use of medial-wedge insoles was highly effective in reducing pain at rest and on movement and promoted a functional improvement of valgus knee OA.
Resumo:
OBJECTIVE To examine cortical thickness and volumetric changes in the cortex of patients with polymicrogyria, using an automated image analysis algorithm. METHODS Cortical thickness of patients with polymicrogyria was measured using magnetic resonance imaging (MRI) cortical surface-based analysis and compared with age-and sex-matched healthy subjects. We studied 3 patients with disorder of cortical development (DCD), classified as polymicrogyria, and 15 controls. Two experienced neuroradiologists performed a conventional visual assessment of the MRIs. The same data were analyzed using an automated algorithm for tissue segmentation and classification. Group and individual average maps of cortical thickness differences were produced by cortical surface-based statistical analysis. RESULTS Patients with polymicrogyria showed increased thickness of the cortex in the same areas identified as abnormal by radiologists. We also identified a reduction in the volume and thickness of cortex within additional areas of apparently normal cortex relative to controls. CONCLUSIONS Our findings indicate that there may be regions of reduced cortical thickness, which appear normal from radiological analysis, in the cortex of patients with polymicrogyria. This finding suggests that alterations in neuronal migration may have an impact in the cortical formation of the cortical areas that are visually normal. These areas are associated or occur concurrently with polymicrogyria.
Resumo:
Objective: To describe and compare foot anthropometry in healthy and diabetic subjects using Medial Longitudinal Arch (MLA) classificatory indexes: Arch Index (AI), Chippaux-Smirak Index (CSI) and (A) over cap Angle ((A) over cap), as well as to compare the classification of these methods in each group. Materials and Methods: Control Group (CG) composed by 21 healthy subjects and Diabetic Group (DG), with 46 diabetic neuropathy subjects. The indexes were calculated from footprints. Results: A larger proportion of flat feet was seen in DG for the three indexes (At: 32,2%, CSI: 59,7%, A: 17,5%), while highly arched feet acted oppositely. The groups were statistically different for the proportion of flat feet in (A) over cap (p=0,0080) and CSI (p=0,0000) and high feet in A (p=0,0036). There were significant differences when compared GC and GD in the three indexes: IA (p 0,0027), CSI (p=0,0064), (A) over cap (p=0,0296). Conclusion: Data showed motor and orthopedic changes originated by peripheral neuropathy, which is responsible for foot changes, causing longitudinal arch crumbling. It was seen that A Angle strongly disagreed when compared with the arch classification made by the other two indexes and therefore, its application needs care.
Resumo:
In rats, phospholipase A(2) (PLA(2)) activity was found to be increased in the hippocampus immediately after training and retrieval of a contextual fear conditioning paradigm (step-down inhibitory avoidance [IA] task). In the present study we investigated whether PLA(2) is also activated in the cerebral cortex of rats in association with contextual fear learning and retrieval. We observed that IA training induces a rapid (immediately after training) and long-lasting (3 h after training) activation of PLA(2) in both frontal and parietal cortices. However, immediately after retrieval (measured 24 h after training), PLA(2) activity was increased just in the parietal cortex. These findings suggest that PLA(2) activity is differentially required in the frontal and parietal cortices for the mechanisms of contextual learning and retrieval. Because reduced brain PLA(2) activity has been reported in Alzheimer disease, our results suggest that stimulation of PLA(2) activity may offer new treatment strategies for this disease.
Resumo:
In addition to pain and neurovegetative symptoms, patients with severe forms of complex regional pain syndrome (CRPS) develop a broad range of symptoms, including sensory disturbances, motor impairment and dystonic posturing. While most patients respond to medical therapy, some are considered refractory and become surgical candidates. To date, the most commonly used surgical procedure for CRPS has been spinal cord stimulation. This therapy often leads to important analgesic effects, but no sensory or motor improvements. We report on 2 patients with pain related to CRPS and severe functional deficits treated with motor cortex stimulation (MCS) who not only had significant analgesic effects, but also improvements in sensory and motor symptoms. In the long term (27 and 36 months after surgery), visual analog scale pain scores were improved by 60-70% as compared to baseline. There was also a significant increase in the range of motion in the joints of the affected limbs and an improvement in allodynia, hyperpathia and hypoesthesia. Positron emission tomography scan in both subjects revealed that MCS influenced regions involved in the circuitry of pain. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Few studies have investigated in vivo changes of the cholinergic basal forebrain in Alzheimer`s disease (AD) and amnestic mild cognitive impairment (MCI), an at risk stage of AD. Even less is known about alterations of cortical projecting fiber tracts associated with basal forebrain atrophy. In this study, we determined regional atrophy within the basal forebrain in 21 patients with AD and 16 subjects with MCI compared to 20 healthy elderly subjects using deformation-based morphometry of MRI scans. We assessed effects of basal forebrain atrophy on fiber tracts derived from high-resolution diffusion tensor imaging (DTI) using tract-based spatial statistics. We localized significant effects relative to a map of cholinergic nuclei in MRI standard space as determined from a postmortem brain. Patients with AD and MCI subjects showed reduced volumes in basal forebrain areas corresponding to anterior medial and lateral, intermediate and posterior nuclei of the Nucleus basalis of Meynert (NbM) as well as in the diagonal band of Broca nuclei (P < 0.01). Effects in MCI subjects were spatially more restricted than in AD, but occurred at similar locations. The volume of the right antero-lateral NbM nucleus was correlated with intracortical projecting fiber tract integrity such as the corpus callosum, cingulate, and the superior longitudinal, inferior longitudinal, inferior fronto-occipital, and uncinate fasciculus (P < 0.05, corrected for multiple comparisons). Our findings suggest that a multimodal MRI-DTI approach is supportive to determine atrophy of cholinergic nuclei and its effect on intracortical projecting fiber tracts in AD. Hum Brain Mapp 32: 1349-1362, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
There remains a lack of solid evidence showing whether transcranial stimulation with weak alternating current (transcranial alternating current stimulation, tACS) can in fact induce significant neurophysiological effects. Previously, a study in which tACS was applied for 2 and 5 min with current density = 0.16-0.25 A/m(2) was unable to show robust effects on cortical excitability. Here we applied tACS at a significantly higher current density (0.80 A/m(2)) for a considerably longer duration (20 min) and were indeed able to demonstrate measurable changes to cortical excitability. Our results show that active 15 Hz tACS of the motor cortex (electrodes placed at C3 and C4) significantly diminished the amplitude of motor evoked potentials and decreased intracortical facilitation (ICF) as compared to baseline and sham stimulation. In addition, we show that our method of sham tACS is a reliable control condition. These results support the notion that AC stimulation with weak currents can induce significant changes in brain excitability; in this case, 15 Hz tACS led to a pattern of inhibition of cortical excitability. We propose that tACS may have a dampening effect on cortical networks and perhaps interfere with the temporal and spatial summation of weak subthreshold electric potentials. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Suicidality is a life-threatening symptom in patients with bipolar disorder (BD). Impulsivity and mood instability are associated with suicidality in mood disorders. Evidence suggests that gray and white matter abnormalities are linked with impulsivity in mood disorders, but little is known about the association between corpus callosum (CC) and impulsivity in BID. We examined the relationship between CC areas, impulsivity and suicidality in BID patients. We studied 10 female BD patients with a history of suicide attempt (mean +/- SD age 36.2 +/- 10.1 years), 10 female BD patients without suicide attempt history (44.2 +/- 12.5 years) and 27 female healthy subjects (36.9 +/- 13.8 years). Impulsivity was evaluated by the Barratt Impulsivity Scale (BIS). We traced MR images to measure the areas of the CC genu, anterior body, posterior body, isthmus and splenium. The genu was divided into anterior, middle and posterior regions. The suicidal and non-suicidal BID patients had significantly higher BIS total, attention and non-planning scores than the healthy subjects (ps < 0.01), and the suicidal BID patients had significantly higher BIS motor scores than the non-suicidal BD and healthy subjects (ps < 0.01). There were no significant differences among the three groups on any regional CC areas, although the suicidal BD patients had the smallest areas. The suicidal BD patients showed a significant inverse correlation between anterior genu area and the BIS total (r = -0.75, p = 0.04), motor (r = -0.79, p = 0.02) and non-planning scores (r = -0.79, p = 0.02). These correlations were not found in the non-suicidal BID patients or healthy subjects. The results suggest that the anterior medial frontal region may be involved in the pathophysiology of impulsive and suicidal behaviors in BD. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: The spectrum approach was used to examine contributions of comorbid symptom dimensions of substance abuse and eating disorder to abnormal prefrontal-cortical and subcortical-striatal activity to happy and fear faces previously demonstrated in bipolar disorder (BD). Method: Fourteen remitted BD-type I and sixteen healthy individuals viewed neutral, mild and intense happy and fear faces in two event-related fMRI experiments. All individuals completed Substance-Use and Eating-Disorder Spectrum measures. Region-of-Interest analyses for bilateral prefrontal and subcortical-striatal regions were performed. Results: BD individuals scored significantly higher on these spectrum measures than healthy individuals (p<0.05), and were distinguished by activity in prefrontal and subcortical-striatal regions. BD relative to healthy individuals showed reduced dorsal prefrontal-cortical activity to all faces. Only BD individuals showed greater subcortical-striatal activity to happy and neutral faces. In BD individuals, negative correlations were shown between substance use severity and right PFC activity to intense happy faces (p<0.04), and between substance use severity and right caudate nucleus activity to neutral faces (p<0.03). Positive correlations were shown between eating disorder and right ventral putamen activity to intense happy (p<0.02) and neutral faces (p<0.03). Exploratory analyses revealed few significant relationships between illness variables and medication upon neural activity in BID individuals. Limitations: Small sample size of predominantly medicated BD individuals. Conclusion: This study is the first to report relationships between comorbid symptom dimensions of substance abuse and eating disorder and prefrontal-cortical and subcortical-striatal activity to facial expressions in BD. Our findings suggest that these comorbid features may contribute to observed patterns of functional abnormalities in neural systems underlying mood regulation in BD. (C) 2009 Elsevier B.V. All rights reserved.