931 resultados para mammalian-cells
Resumo:
A first study in order to construct a simple model of the mammalian retina is reported. The basic elements for this model are Optical Programmable Logic Cells, OPLCs, previously employed as a functional element for Optical Computing. The same type of circuit simulates the five types of neurons present in the retina. Different responses are obtained by modifying either internal or external connections. Two types of behaviors are reported: symmetrical and non-symmetrical with respect to light position. Some other higher functions, as the possibility to differentiate between symmetric and non-symmetric light images, are performed by another simulation of the first layers of the visual cortex. The possibility to apply these models to image processing is reported.
Resumo:
Sensing systems in living bodies offer a large variety of possible different configurations and philosophies able to be emulated in artificial sensing systems. Motion detection is one of the areas where different animals adopt different solutions and, in most of the cases, these solutions reflect a very sophisticated form. One of them, the mammalian visual system, presents several advantages with respect to the artificial ones. The main objective of this paper is to present a system, based on this biological structure, able to detect motion, its sense and its characteristics. The configuration adopted responds to the internal structure of the mammalian retina, where just five types of cells arranged in five layers are able to differentiate a large number of characteristics of the image impinging onto it. Its main advantage is that the detection of these properties is based purely on its hardware. A simple unit, based in a previous optical logic cell employed in optical computing, is the basis for emulating the different behaviors of the biological neurons. No software is present and, in this way, no possible interference from outside affects to the final behavior. This type of structure is able to work, once the internal configuration is implemented, without any further attention. Different possibilities are present in the architecture to be presented: detection of motion, of its direction and intensity. Moreover, some other characteristics, as symmetry may be obtained.
Resumo:
Normal mammalian hearing is refined by amplification of the motion of the cochlear partition. This partition, comprising the organ of Corti sandwiched between the basilar and tectorial membranes, contains the outer hair cells that are thought to drive this amplification process. Force generation by outer hair cells has been studied extensively in vitro and in situ, but, to understand cochlear amplification fully, it is necessary to characterize the role played by each of the components of the cochlear partition in vivo. Observations of cochlear partition motion in vivo are severely restricted by its inaccessibility and sensitivity to surgical trauma, so, for the present study, a computer model has been used to simulate the operation of the cochlea under different experimental conditions. In this model, which uniquely retains much of the three-dimensional complexity of the real cochlea, the motions of the basilar and tectorial membranes are fundamentally different during in situ- and in vivo-like conditions. Furthermore, enhanced outer hair cell force generation in vitro leads paradoxically to a decrease in the gain of the cochlear amplifier during sound stimulation to the model in vivo. These results suggest that it is not possible to extrapolate directly from experimental observations made in vitro and in situ to the normal operation of the intact organ in vivo.
Resumo:
The Saccharomyces cerevisiae Sec7 protein (ySec7p), which is an important component of the yeast secretory pathway, contains a sequence of ≈200 amino acids referred to as a Sec7 domain. Similar Sec7 domain sequences have been recognized in several guanine nucleotide-exchange proteins (GEPs) for ADP ribosylation factors (ARFs). ARFs are ≈20-kDa GTPases that regulate intracellular vesicular membrane trafficking and activate phospholipase D. GEPs activate ARFs by catalyzing the replacement of bound GDP with GTP. We, therefore, undertook to determine whether a Sec7 domain itself could catalyze nucleotide exchange on ARF and found that it exhibited brefeldin A (BFA)-inhibitable ARF GEP activity. BFA is known to inhibit ARF GEP activity in Golgi membranes, thereby causing reversible apparent dissolution of the Golgi complex in many cells. The His6-tagged Sec7 domain from ySec7p (rySec7d) synthesized in Escherichia coli enhanced binding of guanosine 5′-[γ-[35S]thio]triphosphate by recombinant yeast ARF1 (ryARF1) and ryARF2 but not by ryARF3. The effects of rySec7d on ryARF2 were inhibited by BFA in a concentration-dependent manner but not by inactive analogues of BFA (B-17, B-27, and B-36). rySec7d also promoted BFA-sensitive guanosine 5′-[γ-thio]triphosphate binding by nonmyristoylated recombinant human ARF1 (rhARF1), rhARF5, and rhARF6, although the effect on rhARF6 was very small. These results are consistent with the conclusion that the yeast Sec7 domain itself contains the elements necessary for ARF GEP activity and its inhibition by BFA.
Resumo:
Although hormone therapy with antiandrogens has been widely used for the treatment of prostate cancer, some antiandrogens may act as androgen receptor (AR) agonists that may result in antiandrogen withdrawal syndrome. The molecular mechanism of this agonist response, however, remains unclear. Using mammalian two-hybrid assay, we report that antiandrogens, hydroxyflutamide, bicalutamide (casodex), cyproterone acetate, and RU58841, and other compounds such as genistein and RU486, can promote the interaction between AR and its coactivator, ARA70, in a dose-dependent manner. The chloramphenicol acetyltransferase assay further demonstrates that these antiandrogens and related compounds significantly enhance the AR transcriptional activity by cotransfection of AR and ARA70 in a 1:3 ratio into human prostate cancer DU145 cells. Our results suggest that the agonist activity of antiandrogens might occur with the proper interaction of AR and ARA70 in DU145 cells. These findings may provide a good model to develop better antiandrogens without agonist activity.
Resumo:
The effects of insulin on the mammalian target of rapamycin, mTOR, were investigated in 3T3-L1 adipocytes. mTOR protein kinase activity was measured in immune complex assays with recombinant PHAS-I as substrate. Insulin-stimulated kinase activity was clearly observed when immunoprecipitations were conducted with the mTOR antibody, mTAb2. Insulin also increased by severalfold the 32P content of mTOR that was determined after purifying the protein from 32P-labeled adipocytes with rapamycin⋅FKBP12 agarose beads. Insulin affected neither the amount of mTOR immunoprecipitated nor the amount of mTOR detected by immunoblotting with mTAb2. However, the hormone markedly decreased the reactivity of mTOR with mTAb1, an antibody that activates the mTOR protein kinase. The effects of insulin on increasing mTOR protein kinase activity and on decreasing mTAb1 reactivity were abolished by incubating mTOR with protein phosphatase 1. Interestingly, the epitope for mTAb1 is located near the COOH terminus of mTOR in a 20-amino acid region that includes consensus sites for phosphorylation by protein kinase B (PKB). Experiments were performed in MER-Akt cells to investigate the role of PKB in controlling mTOR. These cells express a PKB-mutant estrogen receptor fusion protein that is activated when the cells are exposed to 4-hydroxytamoxifen. Activating PKB with 4-hydroxytamoxifen mimicked insulin by decreasing mTOR reactivity with mTAb1 and by increasing the PHAS-I kinase activity of mTOR. Our findings support the conclusion that insulin activates mTOR by promoting phosphorylation of the protein via a signaling pathway that contains PKB.
Resumo:
Mammalian capping enzymes are bifunctional proteins with both RNA 5′-triphosphatase and guanylyltransferase activities. The N-terminal 237-aa triphosphatase domain contains (I/V)HCXXGXXR(S/T)G, a sequence corresponding to the conserved active-site motif in protein tyrosine phosphatases (PTPs). Analysis of point mutants of mouse RNA 5′-triphosphatase identified the motif Cys and Arg residues and an upstream Asp as required for activity. Like PTPs, this enzyme was inhibited by iodoacetate and VO43− and independent of Mg2+, providing additional evidence for phosphate removal from RNA 5′ ends by a PTP-like mechanism. The full-length, 597-aa mouse capping enzyme and the C-terminal guanylyltransferase fragment (residues 211–597), unlike the triphosphatase domain, bound poly (U) and were nuclear in transfected cells. RNA binding was increased by GTP, and a guanylylation-defective, active-site mutant was not affected. Ala substitution at positions required for the formation of the enzyme-GMP capping intermediate (R315, R530, K533, or N537) also eliminated poly (U) binding, while proteins with conservative substitutions at these sites retained binding but not guanylyltransferase activity. These results demonstrate that the guanylyltransferase domain of mammalian capping enzyme specifies nuclear localization and RNA binding. Association of capping enzyme with nascent transcripts may act in synergy with RNA polymerase II binding to ensure 5′ cap formation.
Resumo:
Among the numerous centrin isoforms identified by two-dimensional gel electrophoresis in human cells, an acidic and slow-migrating isoform is particularly enriched in a centrosome fraction. We report here that this isoform specifically reacts with antibodies raised against Saccharomyces cerevisiae Cdc31p and is present, as other centrin isoforms, in the distal lumen of centrioles. It is encoded by a new centrin gene, which we propose to name HsCEN3 (Homo sapiens centrin gene 3). This gene is more closely related to the yeast CDC31 gene, and shares less identity with algae centrin than HsCEN1 and HsCEN2. A murine CDC31-related gene was also found that shows 98% identity and 100% similarity with HsCEN3, demonstrating a higher interspecies conservation than the murine centrin gene MmCEN1 (Mus musculus centrin gene 1) with either HsCEN1, or HsCEN2. Finally, immunological data suggest that a CDC31-related gene could exist in amphibians and echinoderms as well. All together, our data suggest the existence of two divergent protein subfamilies in the current centrin family, which might be involved in distinct centrosome-associated functions. The possible implication of this new mammalian centrin gene in centrosome duplication is discussed.
Resumo:
Thyroid hormone plays an essential role in mammalian brain maturation and function, in large part by regulating the expression of specific neuronal genes. In this tissue, the type 2 deiodinase (D2) appears to be essential for providing adequate levels of the active thyroid hormone 3,5,3′-triiodothyronine (T3) during the developmental period. We have studied the regional and cellular localization of D2 mRNA in the brain of 15-day-old neonatal rats. D2 is expressed in the cerebral cortex, olfactory bulb, hippocampus, caudate, thalamus, hypothalamus, and cerebellum and was absent from the white matter. At the cellular level, D2 is expressed predominantly, if not exclusively, in astrocytes and in the tanycytes lining the third ventricle and present in the median eminence. These results suggest a close metabolic coupling between subsets of glial cells and neurons, whereby thyroxine is taken up from the blood and/or cerebrospinal fluid by astrocytes and tanycytes, is deiodinated to T3, and then is released for utilization by neurons.
Resumo:
Drosophila Mad proteins are intracellular signal transducers of decapentaplegic (dpp), the Drosophila transforming growth factor β (TGF-β)/bone morphogenic protein (BMP) homolog. Studies in which the mammalian Smad homologs were transiently overexpressed in cultured cells have implicated Smad2 in TGF-β signaling, but the physiological relevance of the Smad3 protein in signaling by TGF-β receptors has not been established. Here we stably expressed Smad proteins at controlled levels in epithelial cells using a novel approach that combines highly efficient retroviral gene transfer and quantitative cell sorting. We show that upon TGF-β treatment Smad3 becomes rapidly phosphorylated at the SSVS motif at its very C terminus. Either attachment of an epitope tag to the C terminus or replacement of these three serine residues with alanine abolishes TGF-β-induced Smad3 phosphorylation; these proteins act in a dominant-negative fashion to block the antiproliferative effect of TGF-β in mink lung epithelial cells. A Smad3 protein in which the three C-terminal serines have been replaced by aspartic acids is also a dominant inhibitor of TGF-β signaling, but can activate plasminogen activator inhibitor 1 (PAI-1) transcription in a ligand-independent fashion when its nuclear localization is forced by transient overexpression. Phosphorylation of the three C-terminal serine residues of Smad3 by an activated TGF-β receptor complex is an essential step in signal transduction by TGF-β for both inhibition of cell proliferation and activation of the PAI-1 promoter.
Resumo:
Growth factors can influence lineage determination of neural crest stem cells (NCSCs) in an instructive manner, in vitro. Because NCSCs are likely exposed to multiple signals in vivo, these findings raise the question of how stem cells would integrate such combined influences. Bone morphogenetic protein 2 (BMP2) promotes neuronal differentiation and glial growth factor 2 (GGF2) promotes glial differentiation; if NCSCs are exposed to saturating concentrations of both factors, BMP2 appears dominant. By contrast, if the cells are exposed to saturating concentrations of both BMP2 and transforming growth factor β1 (which promotes smooth muscle differentiation), the two factors appear codominant. Sequential addition experiments indicate that NCSCs require 48–96 hrs in GGF2 before they commit to a glial fate, whereas the cells commit to a smooth muscle fate within 24 hr in transforming growth factor β1. The delayed response to GGF2 does not reflect a lack of functional receptors; however, because the growth factor induces rapid mitogen-activated protein kinase phosphorylation in naive cells. Furthermore, GGF2 can attenuate induction of the neurogenic transcription factor mammalian achaete-scute homolog 1, by low doses of BMP2. This short-term antineurogenic influence of GGF2 is not sufficient for glial lineage commitment, however. These data imply that NCSCs exhibit cell-intrinsic biases in the timing and relative dosage sensitivity of their responses to instructive factors that influence the outcome of lineage decisions in the presence of multiple factors. The relative delay in glial lineage commitment, moreover, apparently reflects successive short-term and longer-term actions of GGF2. Such a delay may help to explain why glia normally differentiate after neurons, in vivo.
Resumo:
The majority of iron for essential mammalian biological activities such as erythropoiesis is thought to be reutilized from cellular hemoproteins. Here, we generated mice lacking functional heme oxygenase 1 (Hmox1; EC 1.14.99.3), which catabolizes heme to biliverdin, carbon monoxide, and free iron, to assess its participation in iron homeostasis. Hmox1-deficient adult mice developed an anemia associated with abnormally low serum iron levels, yet accumulated hepatic and renal iron that contributed to macromolecular oxidative damage, tissue injury, and chronic inflammation. Our results indicate that Hmox1 has an important recycling role by facilitating the release of iron from hepatic and renal cells, and describe a mouse model of human iron metabolic disorders.
Resumo:
The cytoplasmic region of Fas, a mammalian death factor receptor, shares a limited homology with reaper, an apoptosis-inducing protein in Drosophila. Expression of either the Fas cytoplasmic region (FasC) or of reaper in Drosophila cells caused cell death. The death process induced by FasC or reaper was inhibited by crmA or p35, suggesting that its death process is mediated by caspase-like proteases. Both Ac-YVAD aldehyde and Ac-DEVD aldehyde, specific inhibitors of caspase 1- and caspase 3-like proteases, respectively, inhibited the FasC-induced death of Drosophila cells. However, the cell death induced by reaper was inhibited by Ac-DEVD aldehyde, but not by Ac-YVAD aldehyde. A caspase 1-like protease activity that preferentially recognizes the YVAD sequence gradually increased in the cytosolic fraction of the FasC-activated cells, whereas the caspase 3-like protease activity recognizing the DEVD sequence was observed in the reaper-activated cells. Partial purification and biochemical characterization of the proteases indicated that there are at least three distinct caspase-like proteases in Drosophila cells, which are differentially activated by FasC and reaper. The conservation of the Fas-death signaling pathway in Drosophila cells, which is distinct from that for reaper, may indicate that cell death in Drosophila is controlled not only by the reaper suicide gene, but also by a Fas-like killer gene.
Resumo:
The past two decades have greatly improved our knowledge of vertebrate skeletal morphogenesis. It is now clear that bony morphology lacks individual descriptive specification and instead results from an interplay between positional information assigned during early limb bud deployment and its “execution” by highly conserved cellular response programs of derived connective tissue cells (e.g., chondroblasts and osteoblasts). Selection must therefore act on positional information and its apportionment, rather than on more individuated aspects of presumptive adult morphology. We suggest a trait classification system that can help integrate these findings in both functional and phylogenetic examinations of fossil mammals and provide examples from the human fossil record.
Resumo:
The function of dendritic spines, postsynaptic sites of excitatory input in the mammalian central nervous system (CNS), is still not well understood. Although changes in spine morphology may mediate synaptic plasticity, the extent of basal spine motility and its regulation and function remains controversial. We investigated spine motility in three principal neurons of the mouse CNS: cerebellar Purkinje cells, and cortical and hippocampal pyramidal neurons. Motility was assayed with time-lapse imaging by using two-photon microscopy of green fluorescent protein-labeled neurons in acute and cultured slices. In all three cell types, dendritic protrusions (filopodia and spines) were highly dynamic, exhibiting a diversity of morphological rearrangements over short (<1-min) time courses. The incidence of spine motility declined during postnatal maturation, but dynamic changes were still apparent in many spines in late-postnatal neurons. Although blockade or induction of neuronal activity did not affect spine motility, disruption of actin polymerization did. We hypothesize that this basal motility of dendritic protrusions is intrinsic to the neuron and underlies the heightened plasticity found in developing CNS.