878 resultados para magnesium casting alloys


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lightest density of Mg has stimulated renewed interest in Mg based alloys for applications in the automotive, aerospace and communications industries. However, Mg in the pure form has relatively low strength, limited ductility and is susceptible to corrosion. Great efforts have been made to improve the mechanical properties of Mg alloys. Alloying Mg with other elements is one of the most important methods. An important class of Mg alloys is the Mg-Zn-RE system (RE = rare earth elements). In recent few decades, a series of new Mg-Zn-RE system alloys have been obtained, and detailed the structure and mechanical properties of the alloys. In this paper, the structure and mechanical properties of the Mg-Zn-RE alloys have been summarized. It showed that these alloys have high strength and they are prospected to be widely used in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new-type Mg2Si composite was prepared with Mg-9Al-1Zn (AZ91) alloy and vermiculite as raw materials by melt infiltration method. The results show that the microstructure of composite consists of a large amount Of Mg2Si precipitates and a little amount of MgO embedded in alpha-Mg matrix. The Vickers hardness of the composite is obviously higher than that of matrix of AZ91 alloy. Moreover, the composite exhibits excellent compressive property. The ultimate compressive strength of the material is 290 MPa, the yield strength is 175 MPa, and the elongation is about 5%, which are higher than those of AZ91 alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and electrochemical properties of TiV1.1Mn0.9Nix (x = 0.1-0.7) solid solution electrode alloys have been investigated. It is found that these alloys mainly consist of a solid solution phase with body centered cubic (bcc) structure and a C14 Laves secondary phase. The solid solution alloys show easy activation behavior, high temperature dischargeability, high discharge capacity and favorable high-rate dischargeability as a negative electrode material in Ni-MH battery. The maximum discharge capacity is 502 mAh g(-1) at 303 K when x = 0.4. Electrochemical impedance spectroscopy (EIS) test shows that the charge-transfer resistance at the surface of the alloy electrodes decreases obviously with increasing Ni content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructure and some dynamic performances of Ti0.17Zr0.08V0.34RE0.01Cr0.1Ni0.3 (RE=Ce, Dy) hydrogen storage electrode alloys have been investigated using XRD, FESEM-EDS, ICP-MS and EIS measurements. The alloy is composed of V-based solid solution phase with a dendritic shape and a continuous C14 Laves phase with a network shape surrounding the dendrite. Pressure-composition isotherm curves indicate that the alloy with Dy addition has a lower equilibrium hydrogen pressure and a wider plateau region. The alloy electrode with Dy addition has higher discharge capacity, while the alloy electrode with Ce addition has better activation and higher cycle stability. The alloy electrode with Ce addition has better electrochemical activity with higher exchange current density (127.5 mA g(-1)), lower charge transfer resistance (1.37 Omega) and lower apparent activation energy (30.5 kJ mol(-1)). The capacity degradation behavior for the alloy electrode is attributed to two main factors: one is the dissolutions of V and Zr element to KOH solution, and another is the larger charge transfer resistance which increases with increasing cycle number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface-modified Nafion (R) membrane was prepared by casting proton-conducting polyelectrolyte complexes on the surface of Nafion (R). The casting layer is homogeneous and its thickness is about 900 nm. The proton conductivity of modified Nafion (R) is slightly lower than that of plain Nafion (R); however, its methanol permeability is 41% lower than that of plain Nafion (R). The single cells with modified Nafion (R) exhibit higher open circuit voltage (OCV = 0.73 V) and maximal power density (P-max = 58 mW cm(-2)) than the single cells with plain Nafion (R) (OCV = 0.67 V, P x = 49 mW cm-2). It is a simple, efficient, cost-effective approach to modifying Nafion (R) by casting proton-conducting materials on the surface of Nafion (R).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single phase WxAl(50)Mo(50)-X (X=40, 30, 20 and 10) powders have been synthesized directly by mechanical alloying (MA). The structural evolutions during MA and subsequent as-milled powders by annealing at 1400 degrees C have been analyzed using X-ray diffraction (XRD). Different from the Mo50Al50 alloy, W40Al50Mo10 and W30Al50Mo20 alloys were stable at 1400 degrees C under vacuum. The results of high-pressure sintering indicated that the microhardnesses of two compositions, namely W40Al50Mo10 and W30Al50Mo20 alloys have higher values compared with W50Al50 alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relationship between structure, ionic radius and electronegativity and solubility of the various rare-earth elements in Mg was studied. It is found that light RE(La-Sm, Eu, Yb) have more complicated phase relation with Mg but the heavy RE(Gd-Lu, Sc) have the similar crystal structure with magnesium. Also it is found that the less electronegativity difference between Mg and RE is, the more solubility limit of RE in Mg is. The fact of the RE solubility decreased in magnesium with lowering temperature suggests that there is a possibility of Mg supersaturated solid solution formation and it will decomposition during aging. According to the rule, an megnesium alloy with higher strength feature was developed. Their mechanical properties are UTS 347MPa, YTS 290MPa and elongation 12.5% at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previously, an inverted phase (the minority blocks comprising the continuum phase) was found in solution-cast block copolymer thin films. In this study, the effect of casting solvents on the formation of inverted phase has been studied. Two block copolymers, poly(styrene-b-butadiene) (SB) (M-w = 73 930 Da) and poly(styrene-b-butadiene-b-styrene) (SBS) (M-w = 140 000 Da), with comparable block lengths and equal polystyrene (PS) weight fraction (similar to30 wt %) were used. The copolymer thin films were cast from different solvents, toluene, benzene, cyclohexane, and binary mixtures of benzene and cyclohexane. Toluene and benzene are good solvents for both PS and PB, but have a preferential affinity for PS, while cyclohexane is a good solvent for PB but a Theta solvent for PS (T-Theta = 34.5 degreesC). The differential solvent affinity for PS and PB was estimated in terms of a difference between the polymer-solvent interaction parameter, chi, for each block. Under an extremely slow solvent evaporation rate, the time-dependent phase behavior during such a solution-to-film process was examined by freeze-drying the samples at different stages, corresponding to different copolymer concentrations, rho.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of La/Ce ratio on the structure and electrochemical characteristics of the La0.7-xCexMg0.3Ni2.8Co0.5 (x = 0.1, 0.2, 0.3, 0.4, 0.5) alloys has been studied systematically. The result of the Rietveld analyses shows that, except for small amount of impurity phases including LaNi and LaNi2, all these alloys mainly consist of two phases: the La(La, Mg)(2)Ni-9 phase with the rhombohedral PuNi3-type structure and the LaNi5 phase with the hexagonal CaCU5-type structure. The abundance of the La(La, Mg)(2)Ni-9 phase decreases with increasing cerium content whereas the LaNi5 phase increases with increasing Ce content, moreover, both the a and cell volumes of the two phases decrease with the increase of Ce content. The maximum discharge capacity decreases from 367.5 mAh g(-1) (x = 0.1) to 68.3 mAh g(-1) (x = 0.5) but the cycling life gradually improve. As the discharge current density is 1200 mA g(-1), the HRD increases from 55.4% (x = 0.1) to 67.5% (x = 0.3) and then decreases to 52.1% (x = 0.5). The cell volume reduction with increasing x is detrimental to hydrogen diffusion D and accordingly decreases the low temperature dischargeability of the La0.7-xCexMg0.3Ni2.8Co0.5 (x = 0.1-0.5) alloy electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure, hydrogen storage property and electrochemical characteristics of the La0.7Mg0.3Ni3.5-x(Al0.5Mo0.5), (x=0-0.8) alloys have been investigated systematically. It can be found that with X-ray powder diffraction and Rietveld analysis the alloys are of multiphase alloy and consisted of impurity LaNi phase and two main crystallographic phases, namely the La(La, Mg)(2)Ni-9 phase and the LaNi5 phase, and the lattice parameter and the cell volume of both the La(La, Mg)(2)Ni-9 phase and the LaNi5 phase increases with increasing A] and Mo content in the alloys. The P-C isotherms curves indicate that the hydrogen storage capacity of the alloy first increases and then decreases with increasing x, and the equilibrium pressure decreases with increasing x. The electrochemical measurements show that the maximum discharge capacity first increases from 354.2 (v = 0) to 397.6 mAh g(-1) (x = 0.6) and then decreases to 370.4 mAh g(-1) (x= 0.8). The high-rate dischargeability of the alloy electrode increases lineally from 55.7% (x=0) to 73.8% (x=0.8) at the discharge current density of 1200 mA g(-1). Moreover, the exchange current density of the alloy electrodes also increases monotonously with increasing x.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AB(2-x)%LaNi5 (x =0, 1, 5, 10) composite alloys were prepared by melting Zr0.9Ti0.1Ni1.1Mn0.6V0.3 with a small amount of LaNi5 alloy as addition. The microstructure and electrochemical characteristics of the composite alloys were investigated by means of XRD, SEM, EDS and electrochemical measurements. It was shown that LaNi5 addition does not change the basic hexagonal C14 Laves phase of AB(2) alloys, but some second phases have segregated. It was found that the addition of LaNi5 greatly improves the activation property, high-rate dischargeability (HRD) and charge-discharge cycling stability of AB(2) Laves phase alloy. At current density of 1200 mA/g, HRD of the alloy increases from 38.92% (x =0) to 60.09% (x = 10). The capacity retention of the alloy after 200 charge-discharge cycles increases from 57. 10% (x = 0) to 83.86% (x = 5) and 67.31% (x = 10). The improvement of the electrochemical characteristics caused by LaNi5 addition seems to be related to formation of the second phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents results concerning structure and electrochemical characteristics of the La0.67Mg0.33 (Ni0.8Co0.1Mn0.1) (x) (x=2.5-5.0) alloy. It can be found from the result of the Rietveld analyses that the structures of the alloys change obviously with increasing x from 2.5 to 5.0. The main phase of the alloys with x=2.5-3.5 is LaMg2Ni9 phase with a PuNi3-type rhombohedral structure, but the main phase of the alloys with x=4.0-5.0 is LaNi(5)phase with a CaCu5-type hexagonal structure. Furthermore, the phase ratio, lattice parameter and cell volume of the LaMg2Ni9 phase and the LaNi5 phase change with increasing x. The electrochemical studies show that the maximum discharge capacity increases from 214.7 mAh/g (x=2.5) to 391.1 mAh/g (x=3.5) and then decreases to 238.5 mAh/g (x=5.0). As the discharge current density is 1,200 mA/g, the high rate dischargeability (HRD) increases from 51.1% (x=2.5) to 83.7% (x=3.5) and then decreases to 71.6% (x=5.0). Moreover, the exchange current density (I-0) of the alloy electrodes first increases and then decrease with increasing x from 2.5 to 5.0, which is consistent with the variation of the HRD. The cell volume reduces with increasing x in the alloys, which is detrimental to hydrogen diffusion and accordingly decreases the low-temperature dischargeability of the alloy electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures and the electrochemical characteristics of La0.7-xCexMg0.3Ni2.8Co0.5 (x = 0.1-0.5) alloy, Ti0.25-xZrxV0.35Cr0.1Ni0.3 (x = 0.05-0.15) alloy and AB(3

Relevância:

20.00% 20.00%

Publicador:

Resumo:

W1-xAlx (x=0-0.86) alloys were synthesized by mechanically alloying the pure metal powder mixtures at designated compositions by conventional high-energy ball milling. The W-Al alloys were stable under high pressure and high temperature. The alloys were lighter than W. The hardness and oxidation resistance of the alloys was greatly improved compared to both W and Al. (C) 2002 Elsevier Science B.V. All rights reserved.