836 resultados para load-balancing scheduling
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Within a weekly market horizon, this paper considers a power producer that sells its energy both in the pool and through weekly forward contracts. The paper provides a methodology that allows the producer to derive the self-scheduling of its production units, to select weekly forward contracts, and to obtain the offering strategy for Monday's pool. The proposed technique is based on stochastic programming and allows the producer to maximize its expected profit while controlling the risk of profit variability. A comprehensive case study is used to illustrate the characteristics of the proposed methodology. Appropriate conclusions are finally drawn.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper was evaluated, using the software ANSYS, the stiffness (El) of the log-concrete composite beams, of section T, with connectors formed by bonded-in steel rods, type CA-50, disposed in X, with application of cyclical load. The stiffness of the system was evaluated through the simulation of bending tests, considered 1/2 beam, with cyclical shipment varying among 40 % and 5 % of the strength of the connection with the load relationship R=0,125, for a total of 10 load cycles applied. The numeric results show a good agreement with experimental tests.
Resumo:
A multi-agent framework for spatial electric load forecasting, especially suited to simulate the different dynamics involved on distribution systems, is presented. The service zone is divided into several sub-zones, each subzone is considered as an independent agent identified with a corresponding load level, and their relationships with the neighbor zones are represented as development probabilities. With this setting, different kind of agents can be developed to simulate the growth pattern of the loads in distribution systems. This paper presents two different kinds of agents to simulate different situations, presenting some promissory results.
Resumo:
This work shows a computational methodology for the determination of synchronous machines parameters using load rejection test data. The quadrature axis parameters are obtained with a rejection under an arbitrary reference, reducing the present difficulties.
Resumo:
The objective of this work is the development of a methodology for electric load forecasting based on a neural network. Here, it is used Backpropagation algorithm with an adaptive process based on fuzzy logic. This methodology results in fast training, when compared to the conventional formulation of Backpropagation algorithm. Results are presented using data from a Brazilian Electric Company and the performance is very good for the proposal objective.
Resumo:
In this paper we describe a scheduler simulator for real-time tasks, RTsim, that can be used as a tool to teach real-time scheduling algorithms. It simulates a variety of preprogrammed scheduling policies for single and multi-processor systems and simple algorithm variants introduced by its user. Using RTsim students can conduct experiments that will allow them to understand the effects of each policy given different load conditions and learn which policy is better for different workloads. We show how to use RTsim as a learning tool and the results achieved with its application on the Real-Time Systems course taught at the B.Sc. on Computer Science at Paulista State University - Unesp - at Rio Preto.
Resumo:
This work shows a computational methodology for the determination of synchronous machines parameters using load rejection test data. By machine modeling one can obtain the quadrature parameters through a load rejection under an arbitrary reference, reducing the present difficulties. The proposed method is applied to a real machine.
Resumo:
This work presents a procedure for electric load forecasting based on adaptive multilayer feedforward neural networks trained by the Backpropagation algorithm. The neural network architecture is formulated by two parameters, the scaling and translation of the postsynaptic functions at each node, and the use of the gradient-descendent method for the adjustment in an iterative way. Besides, the neural network also uses an adaptive process based on fuzzy logic to adjust the network training rate. This methodology provides an efficient modification of the neural network that results in faster convergence and more precise results, in comparison to the conventional formulation Backpropagation algorithm. The adapting of the training rate is effectuated using the information of the global error and global error variation. After finishing the training, the neural network is capable to forecast the electric load of 24 hours ahead. To illustrate the proposed methodology it is used data from a Brazilian Electric Company. © 2003 IEEE.
Resumo:
A 1000-kgf resistive strain-gauge load cell has been developed for quality testing of rocket propellant grain. A 7075-T6 aluminum alloy has been used for the elastic column, in which 8 uniaxial, 120-Ω strain gauges have been bonded and connected to form a full Wheatstone bridge to detect the strain. The chosen geometry makes the transducer insensitive to moments and, also, to the temperature. Experimental tests using a universal testing machine to imposed compression force to the load cell have demonstrated that its behavior is linear, with sensitivity of 2.90 μV/kgf ± 0.34%, and negligible hysteresis. The designed force transducer response to a dynamic test has been comparable to that of a commercial load cell. © 2005 IEEE.
Resumo:
With the considerable increase of the losses in electric utilities of developing countries, such as Brazil, there is an investigation for loss calculation methodologies, considering both technical (inherent of the system) and non-technical (usually associated to the electricity theft) losses. In general, all distribution networks know the load factor, obtained by measuring parameters directly from the network. However, the loss factor, important for the energy loss cost calculation, can only be obtained in a laborious way. Consequently, several formulas have been developed for obtaining the loss factor. Generally, it is used the expression that relates both factors, through the use of a coefficient k. Last reviews introduce a range of factor k within 0.04 - 0.30. In this work, an analysis with real life load curves is presented, determining new values for the coefficient k in a Brazilian electric utility. © 2006 IEEE.
Resumo:
A lot sizing and scheduling problem prevalent in small market-driven foundries is studied. There are two related decision levels: (1) the furnace scheduling of metal alloy production, and (2) moulding machine planning which specifies the type and size of production lots. A mixed integer programming (MIP) formulation of the problem is proposed, but is impractical to solve in reasonable computing time for non-small instances. As a result, a faster relax-and-fix (RF) approach is developed that can also be used on a rolling horizon basis where only immediate-term schedules are implemented. As well as a MIP method to solve the basic RF approach, three variants of a local search method are also developed and tested using instances based on the literature. Finally, foundry-based tests with a real-order book resulted in a very substantial reduction of delivery delays and finished inventory, better use of capacity, and much faster schedule definition compared to the foundry's own practice. © 2006 Elsevier Ltd. All rights reserved.