954 resultados para liquid-gas phase transition
Resumo:
By incorporating self-consistent field theory with lattice Boltzmann method, a model for polymer melts is proposed. Compared with models based on Ginzburg-Landau free energy, our model does not employ phenomenological free energies to describe systems and can consider the chain topological details of polymers. We use this model to study the effects of hydrodynamic interactions on the dynamics of microphase separation for block copolymers. In the early stage of phase separation, an exponential growth predicted by Cahn-Hilliard treatment is found. Simulation results also show that the effect of hydrodynamic interactions can be neglected in the early stage.
Resumo:
Poly (3-butylthiophene) (P3BT) is a much less studied conjugated polymer despite its high crystallizability and thus excellent electrical property. In this work, morphology of P3BT at different crystalline polymorphs and solvent/thermal induced phase transition between form I and U modifications have been intensively investigated by using optical microscopy, electron microscopy, differential scanning calorimetry, and X-ray diffraction. It is shown that a direct deposition from carbon disulfide (CS2) at fast evaporation results in P3BT crystals in form I modification, giving typical whiskerlike morphology. In contrast, low evaporation rate from CS, leads to formation of form II crystals with spherulitic morphology, which is so far scarcely observed in polythiophene.
Resumo:
The effects of hydrodynamic interactions on the lamellar ordering process for two-dimensional quenched block copolymers in the presence of extended defects and the topological defect evolutions in lamellar ordering process are numerically investigated by means of a model based on lattice Boltzmann method and self-consistent field theory. By observing the evolution of the average size of domains, it is found that the domain growth is faster with stronger hydrodynamic effects. The morphological patterns formed also appear different. To study the defect evolution, a defect density is defined and is used to explore the defect evolutions in lamellar ordering process. Our simulation results show that the hydrodynamics effects can reduce the density of defects. With our model, the relations between the Flory-Huggins interaction parameter chi, the length of the polymer chains N, and the defect evolutions are studied.
Resumo:
Nanocrystalline ZrO2 fine powders were prepared via the Pechini-type sol-gel process followed by annealing from 500 to 1000 degrees C. The obtained ZrO2 samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), electron paramagnetic resonance (EPR), and photoluminescence spectra (PL), respectively. The phase transition process from tetragonal (T) to monoclinic (M) was observed for the nanocrystalline ZrO2 powders in the annealing process, accompanied by the change of their photoluminescence properties. The 500 degrees C annealed ZrO2, powder with tetragonal structure shows an intense whitish blue emission (lambda(max) = 425 nm) with a wide range of excitation (230-400 nm). This emission decreased in intensity after being annealed at 600 degrees C (T + M-ZrO2) and disappeared at 700 (T + M-ZrO2), 800 (T + M-ZrO2), and 900 degrees C (M-ZrO2). After further annealing at 1000 degrees C (M-ZrO2), a strong blue-green emission appeared again (lambda(max) = 470 nm).
Resumo:
A new iron(III) coordination compound exhibiting a two-step spin-transition behavior with a remarkably wide [HS-LS] plateau of about 45 K has been synthesized from a hydrazino Schiff-base ligand with an N,N,O donor set, namely 2-methoxy-6-(pyridine-2-ylhydrazonomethyl) phenol (Hmph). The single-crystal X-ray structure of the coordination compound {[Fe(mph)(2)](ClO4)(MeOH)(0.5)(H2O)(0.5)}(2) (1) determined at 150 K reveals the presence of two slightly different iron(III) centers in pseudo-octahedral environments generated by two deprotonated tridentate mph ligands. The presence of hydrogen bonding interactions, instigated by the well-designed ligand, may justify the occurrence of the abrupt transitions. 1 has been characterized by temperature-dependent magnetic susceptibility measurements, EPR spectroscopy, differential scanning calorimetry, and Fe-51 Mossbauer spectroscopy, which all confirm the occurrence of a two-step transition. In addition, the iron(III) species in the high-spin state has been trapped and characterized by rapid cooling EPR studies.
Resumo:
The effect of template phase on the structures of as-synthesized silica nanoparticles with fragile DDAB vesicles as templates is reported. It is found that the template phase plays a critical role in the growth process of silica: the unstable DDAB vesicles in liquid-crystalline phase often lead to the formation of mesostructured solid spheres, and the rather stable DDAB vesicles in gel phase lead to the formation of hollow spheres with less mesostructures.
Resumo:
Bond distances, vibrational frequencies, electron affinities, ionization potentials, dissociation energies, and dipole moments of the title molecules in neutral, positively, and negatively charged ions were studied using density functional method. Ground electronic state was assigned for each molecule. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that, besides ionic component, covalent bonds are formed between the metal s, d orbitals, and the p orbital of S, Se, and Te. For neutral and cationic molecules, the covalent character increases from ScX to CrX and from FeX to CuX with an exception of decrease at MnX and ZnX, while for anionic molecules, the trend is not obvious. For both neutral and charged molecules, the sulfides have the shortest bond distance and largest vibrational frequency, while tellurides have the largest bond distance and smallest vibrational frequency. For neutral and anionic molecules, the dissociation energy of sulfides is the largest, that of tellurides is the smallest, while this only remains true for cationic molecules from ScX+ to FeX+.
Resumo:
The influence of the rigidity of polymer backbones on the side-chain crystallization and phase transition behavior was systematically investigated by a combination of differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), and high-resolution solid-state nuclear magnetic resonance spectroscopy (NMR). DSC investigation indicated that the crystallization number of alkyl carbon atoms of the side chains grafted onto the rigid polymer backbone, poly(p-benzamide) (PBA), is much lower than that of the alkyl carbon atoms of the side chains grafted onto the flexible polymer backbone, poly(ethyleneimine) (PEI), implying that the conformational state of the polymer backbones has a strong effect on the side-chain crystallization behavior in comblike polymers. WAXD and FTIR results proved that these two comblike polymers pack into hexagonal (PBA18C) and orthorhombic (PEI18C) crystals, respectively, depending on the adjusting ability of the polymer backbones for particular conformational states. It was also found that the presence of the crystalline-amorphous interphase (delta = 31.6 ppm) in PBA18C detected by solid-state C-13 NMR spectroscopy can be attributed to the rigid PBA backbone, which restricts the mobility of the alkyl side chains.
Resumo:
Order-disorder transition (ODT) behavior in eicosylated polyethyleneimine (PEI20C) comblike polymer obtained by grafting n-eicosyl group on polyethyleneimine backbone was systematically investigated by the combination of differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), Fourier transform infrared (FTIR) spectroscopy as well as solid-state high resolution nuclear magnetic resonance (NMR) spectroscopy. DSC investigations showed two obvious transitions, assigned to the transitions (1) from orthorhombic to hexagonal and (2) from hexagonal to amorphous phase, respectively. These transitions are induced by the variations of alkyl side chain conformation and packing structure with temperature changing, which consequently lead to the destruction of original phase equilibrium. The ODT behavior can also be confirmed by spectroscopic methods like WAXD, FTIR and NMR. The ordered structure and the transition behavior of the alkyl side chains confined by the PEI backbone are obviously different from those of pristine normal alkanes. The transition mechanism of ODT and the origin of the phase transition behavior in PEI20C comblike polymer were discussed in detail in this paper.
Resumo:
An efficient enantioselective catalyst of 5 wt.% Ru/-gamma-Al2O3 modified with R,R-1,2-diphenylethylene-diamine ((R,R)-DPEN) for the hydrogenation of a non-activated aromatic ketone of acetophenone has been investigated, a relatively high enantiomeric excess (ee) of 60.5% was obtained at both the conversion and selectivity larger than 99%, it was about three times higher than the ee values reported up to now for acetophenone hydrogenation with the supported transition metal catalysts modified by chiral reagents. The influences of some reaction parameters such as phosphine ligand, substrate/catalyst/modifier molar ratios, base, solvent, pressure and reaction temperature have been discussed. The chiral modifier of (R,R)-DPEN was very important in controlling the enantioselectivity through adsorption competing with other substrates on the surface of active metal species. The phosphine ligand and base were also important and indispensable in the present reaction.
Resumo:
Many phases appear in BaLn(2)Mn(2)O(7) family (Ln = rare earth) belonging to one of the Ruddlesden-Popper type compounds, depending upon the experimental conditions such as heating conditions when prepared and composition. Some of these phases were characterized by powder X-ray diffraction method using Rietveld analysis. These phases have only a little difference in crystal structure which has fundamentally K2NiF4 type structure, although the X-ray diffraction patterns are clearly different: a little deformation or tilting of the oxygen octahedron surrounding a central manganese ion composing the main frame of this structure induce these different diffraction patterns. Phase behavior of these compounds, mainly the detailed relation between various phases in BaTb2Mn2O7, was refined including the data of high temperature X-ray diffractometry.
Resumo:
Submonolayer thin films of a three-ring bent-core (that is, banana-shaped) compound, m-bis(4-n-octyloxystyryl)benzene (m-OSB), were prepared by the vacuum-deposition method, and their morphologies, structures, and phase behavior were investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The films have island shapes ranging from compact elliptic or circular patterns at low temperatures (below 40 degreesC) to branched patterns at high temperatures (above 60 degreesC). This shape evolution is contrary to the prediction based on the traditional diffusion-limited aggregation (DLA) theory. AFM observations revealed that two different mechanisms governed the film growth, in which the compact islands were formed via a dewetting-like behavior, while the branched islands diffusion-mediated. It is suggested m-OSB forms a two-dimensional, liquid crystal at the low-temperature substrate that is responsible for the unusual formation of compact islands. All of the monolayer islands are unstable and apt to transform to slender bilayer crystals at room temperature. This phase transition results from the peculiar molecular shape and packing of the bent-core molecules and is interpreted as escaping from macroscopic net polarization by the formation of an antiferroelectric alignment.
Resumo:
alpha(1)-VOPO4, alpha(II)-VOPO4 and beta-VOPO4 have been investigated as catalysts for the gas phase oxidative dehydrogenation (ODH) of cyclohexane to cyclohexene with the addition of acetic acid (HOAc) in the feeds in a fixed bed reactor. Different VOPO4 phases showed different acidity and reducibility. beta-VOPO4 phase is more active than alpha(I)-VOPO4 and alpha(II)-VOPO4 in the ODH without acetic acid addition. In the presence of acetic acid, the acidity of the catalyst may play an important role in the ODH process. Due to higher acidity, alpha(I)-VOPO4 phase catalyst gives better catalytic performances than alpha(I)-VOPO4 and beta-VOPO4 for the ODH of cyclohexane by adding of acetic acid in the reactants.
Resumo:
The cloud-point temperatures (T-cl's) of both binary poly(ethylene oxide) (PEO)-poly(ethylene oxide-b-dimethylsiloxane) [P(EO-b-DMS)] and ternary[toluene/PEO/P(EO-b-DMS)] systems were determined by light scattering measurements at atmospheric pressure. The phase separation behavior upon cooling in the ternary system has been investigated at atmospheric pressure and under high pressure and compared to the phase behavior in the binary system. The phase transition temperatures have been obtained for all of the samples. As a result, the pressure induces compatibility in the binary mixtures, but for the ternary system, pressure not only can induce mixing but also can induce phase separation.
Resumo:
The phase transition of two kinds of solvent-induced crystalline syndiotactic polystyrene (sPS). gamma-sPS and delta(c)-sPS, has been studied via WAXD and DSC. gamma-sPS transform to a-sPS at 195-225 degrees C before melt during heating, whereas delta(e)-sPS transform to first gamma-sPS and then a-sPS at 100-200 degrees C and 200-215 degrees C, respectively. The transition of delta(e)-gamma and gamma-a occurs for below melting point of sPS indicates they are all solid-solid transition.