951 resultados para lines
Resumo:
Dinosaur dentine exhibits growth lines that are tens of micrometers in width. These laminations are homologous to incremental lines of von Ebner found in extant mammal and crocodilian teeth (i.e., those of amniotes). The lines likely reflect daily dentine formation, and they were used to infer tooth development and replacement rates. In general, dinosaur tooth formation rates negatively correlated with tooth size. Theropod tooth replacement rates negatively correlated with tooth size, which was due to limitations in the dentine formation rates of their odontoblasts. Derived ceratopsian and hadrosaurian dinosaurs retained relatively rapid tooth replacement rates through ontogeny. The evolution of dental batteries in hadrosaurs and ceratopsians can be explained by dentine formation constraints and rapid tooth wear. In combination with counts of shed dinosaur teeth, tooth replacement rate data can be used to assess population demographics of Mesozoic ecosystems. Finally, it is of historic importance to note that Richard Owen appears to have been the first to observe incremental lines of von Ebner in dinosaurs more than 150 years ago.
Resumo:
Induction of wild-type p53 in the ECV-304 bladder carcinoma cell line by infection with a p53 recombinant adenovirus (Ad5CMV-p53) resulted in extensive apoptosis and eventual death of nearly all of the cells. As a strategy to determine the molecular events important to p53-mediated apoptosis in these transformed cells, ECV-304 cells were selected for resistance to p53 by repeated infections with Ad5CMV-p53. We compared the expression of 5,730 genes in p53-resistant (DECV) and p53-sensitive ECV-304 cells by reverse transcription–PCR, Northern blotting, and DNA microarray analysis. The expression of 480 genes differed by 2-fold or more between the two p53-infected cell lines. A number of potential targets for p53 were identified that play roles in cell cycle regulation, DNA repair, redox control, cell adhesion, apoptosis, and differentiation. Proline oxidase, a mitochondrial enzyme involved in the proline/pyrroline-5-carboxylate redox cycle, was up-regulated by p53 in ECV but not in DECV cells. Pyrroline-5-carboxylate (P5C), a proline-derived metabolite generated by proline oxidase, inhibited the proliferation and survival of ECV-304 and DECV cells and induced apoptosis in both cell lines. A recombinant proline oxidase protein tagged with a green fluorescent protein at the amino terminus localized to mitochondria and induced apoptosis in p53-null H1299 non-small cell lung carcinoma cells. The results directly implicate proline oxidase and the proline/P5C pathway in p53-induced growth suppression and apoptosis.
Resumo:
We recently have shown that mice deficient for the 86-kDa component (Ku80) of the DNA-dependent protein kinase exhibit growth retardation and a profound deficiency in V(D)J (variable, diversity, and joining) recombination. These defects may be related to abnormalities in DNA metabolism that arise from the inability of Ku80 mutant cells to process DNA double-strand breaks. To further characterize the role of Ku80 in DNA double-strand break repair, we have generated embryonic stem cells and pre-B cells and examined their response to ionizing radiation. Ku80−/− embryonic stem cells are more sensitive than controls to γ-irradiation, and pre-B cells derived from Ku80 mutant mice display enhanced spontaneous and γ-ray-induced apoptosis. We then determined the effects of ionizing radiation on the survival, growth, and lymphocyte development in Ku80-deficient mice. Ku80−/− mice display a hypersensitivity to γ-irradiation, characterized by loss of hair pigmentation, severe injury to the gastrointestinal tract, and enhanced mortality. Exposure of newborn Ku80−/− mice to sublethal doses of ionizing radiation enhances their growth retardation and results in the induction of T cell-specific differentiation. However, unlike severe combined immunodeficient mice, radiation-induced T cell development in Ku80−/− mice is not accompanied by extensive thymocyte proliferation. The response of Ku80-deficient cell lines and mice to DNA-damaging agents provides important insights into the role of Ku80 in growth regulation, lymphocyte development, and DNA repair.
Resumo:
To better understand the structure and function of Z lines, we used sarcomeric isoforms of α-actinin and γ-filamin to screen a human skeletal muscle cDNA library for interacting proteins by using the yeast two-hybrid system. Here we describe myozenin (MYOZ), an α-actinin- and γ-filamin-binding Z line protein expressed predominantly in skeletal muscle. Myozenin is predicted to be a 32-kDa, globular protein with a central glycine-rich domain flanked by α-helical regions with no strong homologies to any known genes. The MYOZ gene has six exons and maps to human chromosome 10q22.1-q22.2. Northern blot analysis demonstrated that this transcript is expressed primarily in skeletal muscle with significantly lower levels of expression in several other tissues. Antimyozenin antisera stain skeletal muscle in a sarcomeric pattern indistinguishable from that seen by using antibodies for α-actinin, and immunogold electron microscopy confirms localization specifically to Z lines. Thus, myozenin is a skeletal muscle Z line protein that may be a good candidate gene for limb-girdle muscular dystrophy or other neuromuscular disorders.
Resumo:
We have generated transgenic medaka (teleost, Oryzias latipes), which allow us to monitor germ cells by green fluorescent protein (GFP) fluorescence in live specimens. Two medaka strains, himedaka (orange–red variety) and inbred QurtE, were used. The transgenic lines were achieved by microinjection of a construct containing the putative promoter region and 3′ region of the medaka vasa gene (olvas). The intensity of GFP fluorescence increases dramatically in primordial germ cells (PGCs) located in the ventrolateral region of the posterior intestine around stage 25 (the onset of blood circulation). Whole-mount in situ hybridization and monitoring of ectopically located cells by GFP fluorescence suggested that (i) the increase in zygotic olvas expression occurs after PGC specification and (ii) PGCs can maintain their cell characteristics ectopically after stages 20–25. Around the day of hatching, the QurtE strain clearly exhibits sexual dimorphisms in the number of GFP fluorescent germ cells, a finding consistent with the appearance of leucophores, a sex-specific marker of QurtE. The GFP expression persists throughout the later stages in the mature ovary and testis. Thus, these transgenic medaka represent a live vertebrate model to investigate how germ cells migrate to form sexually dimorphic gonads, as well as a potential assay system for environmental substances that may affect gonad development. The use of a transgenic construct as a selective marker to efficiently isolate germ-line-transmitting founders during embryogenesis is also discussed.
Resumo:
The membrane proteins of peripheral light-harvesting complexes (LHCs) bind chlorophylls and carotenoids and transfer energy to the reaction centers for photosynthesis. LHCs of chlorophytes, chromophytes, dinophytes, and rhodophytes are similar in that they have three transmembrane regions and several highly conserved Chl-binding residues. All LHCs bind Chl a, but in specific taxa certain characteristic pigments accompany Chl a: Chl b and lutein in chlorophytes, Chl c and fucoxanthin in chromophytes, Chl c and peridinin in dinophytes, and zeaxanthin in rhodophytes. The specificity of pigment binding was examined by in vitro reconstitution of various pigments with a simple light-harvesting protein (LHCaR1), from a red alga (Porphyridium cruentum), that normally has eight Chl a and four zeaxanthin molecules. The pigments typical of a chlorophyte (Spinacea oleracea), a chromophyte (Thallasiosira fluviatilis), and a dinophyte (Prorocentrum micans) were found to functionally bind to this protein as evidenced by their participation in energy transfer to Chl a, the terminal pigment. This is a demonstration of a functional relatedness of rhodophyte and higher plant LHCs. The results suggest that eight Chl-binding sites per polypeptide are an ancestral trait, and that the flexibility to bind various Chl and carotenoid pigments may have been retained throughout the evolution of LHCs.
Resumo:
Retinoid dysregulation may be an important factor in the etiology of schizophrenia. This hypothesis is supported by three independent lines of evidence that triangulate on retinoid involvement in schizophrenia: (i) congenital anomalies similar to those caused by retinoid dysfunction are found in schizophrenics and their relatives; (ii) those loci that have been suggestively linked to schizophrenia are also the loci of the genes of the retinoid cascade (convergent loci); and (iii) the transcriptional activation of the dopamine D2 receptor and numerous schizophrenia candidate genes is regulated by retinoic acid. These findings suggest a close causal relationship between retinoids and the underlying pathophysiological defects in schizophrenia. This leads to specific strategies for linkage analyses in schizophrenia. In view of the heterodimeric nature of the retinoid nuclear receptor transcription factors, e.g., retinoid X receptor β at chromosome 6p21.3 and retinoic acid receptor β at 3p24.3, two-locus linkage models incorporating genes of the retinoid cascade and their heterodimeric partners, e.g., peroxisome proliferator-activated receptor α at chromosome 22q12-q13 or nuclear-related receptor 1 at chromosome 2q22-q23, are proposed. New treatment modalities using retinoid analogs to alter the downstream expression of the dopamine receptors and other genes that are targets of retinoid regulation, and that are thought to be involved in schizophrenia, are suggested.
Resumo:
We have developed an efficient reverse-genetics protocol that uses expedient pooling and hybridization strategies to identify individual transfer-DNA insertion lines from a collection of 6000 independently transformed lines in as few as 36 polymerase chain reactions. We have used this protocol to systematically isolate Arabidopsis lines containing insertional mutations in individual cytochrome P450 genes. In higher plants P450 genes encode enzymes that perform an exceptionally wide range of functions, including the biosynthesis of primary metabolites necessary for normal growth and development, the biosynthesis of secondary products, and the catabolism of xenobiotics. Despite their importance, progress in assigning enzymatic function to individual P450 gene products has been slow. Here we report the isolation of the first 12 such lines, including one (CYP83B1-1) that displays a runt phenotype (small plants with hooked leaves), and three insertions in abundantly expressed genes. The DNAs used in this study are publicly available and can be used to systematically isolate mutants in Arabidopsis.
Resumo:
To investigate correlations between phenotypic adaptation to water limitation and drought-induced gene expression, we have studied a model system consisting of a drought-tolerant line (R1) and a drought-sensitive line (S1) of sunflowers (Helianthus annuus L.) subjected to progressive drought. R1 tolerance is characterized by the maintenance of shoot cellular turgor. Drought-induced genes (HaElip1, HaDhn1, and HaDhn2) were previously identified in the tolerant line. The accumulation of the corresponding transcripts was compared as a function of soil and leaf water status in R1 and S1 plants during progressive drought. In leaves of R1 plants the accumulation of HaDhn1 and HaDhn2 transcripts, but not HaElip1 transcripts, was correlated with the drought-adaptive response. Drought-induced abscisic acid (ABA) concentration was not associated with the varietal difference in drought tolerance. Stomata of both lines displayed similar sensitivity to ABA. ABA-induced accumulation of HaDhn2 transcripts was higher in the tolerant than in the sensitive genotype. HaDhn1 transcripts were similarly accumulated in the tolerant and in the sensitive plants in response to ABA, suggesting that additional factors involved in drought regulation of HaDhn1 expression might exist in tolerant plants.
Resumo:
Cross-contamination between cell lines is a longstanding and frequent cause of scientific misrepresentation. Estimates from national testing services indicate that up to 36% of cell lines are of a different origin or species to that claimed. To test a standard method of cell line authentication, 253 human cell lines from banks and research institutes worldwide were analyzed by short tandem repeat profiling. The short tandem repeat profile is a simple numerical code that is reproducible between laboratories, is inexpensive, and can provide an international reference standard for every cell line. If DNA profiling of cell lines is accepted and demanded internationally, scientific misrepresentation because of cross-contamination can be largely eliminated.
Resumo:
Stable mammalian cell lines harboring a synthetic bovine opsin gene have been derived from the suspension-adapted HEK293 cell line. The opsin gene is under the control of the immediate-early cytomegalovirus promoter/enhancer in an expression vector that also contains a selectable marker (Neo) governed by a relatively weak promoter. The cell lines expressing the opsin gene at high levels are selected by growth in the presence of high concentrations of the antibiotic geneticin. Under the conditions used for cell growth in suspension, opsin is produced at saturated culture levels of more than 2 mg/liter. After reconstitution with 11-cis-retinal, rhodopsin is purified to homogeneity in a single step by immunoaffinity column chromatography. Rhodopsin thus prepared (> 90% recovery at concentrations of up to 15 microM) is indistinguishable from rhodopsin purified from bovine rod outer segments by the following criteria: (i) UV/Vis absorption spectra in the dark and after photobleaching and the rate of metarhodopsin II decay, (ii) initial rates of transducin activation, and (iii) the rate of phosphorylation by rhodopsin kinase. Although mammalian cell opsin migrates slower than rod outer segment opsin on SDS/polyacrylamide gels, presumably due to a different N-glycosylation pattern, their mobilities after deglycosylation are identical. This method has enabled the preparation of several site-specific mutants of bovine opsin in comparable amounts.
Resumo:
We have previously shown that the G protein of vesicular stomatitis virus (VSV-G) can be incorporated into the virions of retroviruses. Since expression of VSV-G is toxic to most mammalian cells, development of stable VSV-G packaging cell lines requires inducible VSV-G expression. We have modified the tetracycline-inducible system by fusing the ligand binding domain of the estrogen receptor to the carboxy terminus of a tetracycline-regulated transactivator. Using this system, we show that VSV-G expression is tetracycline-dependent and can be modulated by beta-estradiol. Stable packaging cell lines can readily be established and high-titer pseudotyped retroviral vectors can be generated upon induction of VSV-G expression.
Resumo:
To isolate and characterize effector molecules of the transforming growth factor beta (TGFbeta) signaling pathway we have used a genetic approach involving the generation of stable recessive mutants, defective in their TGFbeta signaling, which can subsequently be functionally complemented to clone the affected genes. We have generated a cell line derived from a hypoxanthine-guanine phosphoribosyltransferase negative (HPRT-) HT1080 clone that contains the selectable marker Escherichia coli guanine phosphoribosyltransferase (gpt) linked to a TGFbeta-responsive promoter. This cell line proliferates or dies in the appropriate selection medium in response to TGFbeta. We have isolated three distinct TGFbeta-unresponsive mutants following chemical mutagenesis. Somatic cell hybrids between pairs of individual TGFbeta-unresponsive clones reveal that each is in a distinct complementation group. Each mutant clone retains all three TGFbeta receptors yet fails to induce a TGFbeta-inducible luciferase reporter construct or TGFbeta-mediated plasminogen activator inhibitor-1 (PAI-1) expression. Two of the three have an attenuated TGFbeta-induced fibronectin response, whereas in the other mutant the fibronectin response is intact. These TGFbeta-unresponsive cells should allow selection and identification of signaling molecules through functional complementation.
Resumo:
A major question in central nervous system development, including the neuroretina, is whether migrating cells express cues to find their way and settle at specific locations. We have transplanted quail neuroretinal cell lines QNR/D, a putative amacrine or ganglion cell, and QNR/K2, a putative Müller cell into chicken embryo eyes. Implanted QNR/D cells migrate only to the retinal ganglion and amacrine cell layers and project neurites in the plane of retina; in contrast, QNR/K2 cells migrate through the ganglion and amacrine layers, locate in the inner nuclear layer, and project processes across the retina. These data show that QNR/D and QNR/K2 cell lines represent distinct neural cell types, suggesting that migrating neural cells express distinct address cues. Furthermore, our results raise the possibility that immortalized cell lines can be used for replacement of specific cell types and for the transport of genes to given locations in neuroretina.
Resumo:
Adenovirus (Ad) vectors have been extensively used to deliver recombinant genes to a great variety of cell types in vitro and in vivo. Ad-based vectors are available that replace the Ad early region 1 (E1) with recombinant foreign genes. The resultant E1-deleted vectors can then be propagated on 293 cells, a human embryonal kidney cell line that constitutively expresses the E1 genes. Unfortunately, infection of cells and tissues in vivo results in low-level expression of Ad early and late proteins (despite the absence of E1 activity) resulting in immune recognition of virally infected cells. The infected cells are subsequently eliminated, resulting in only a transient expression of foreign genes in vivo. We hypothesize that a second-generation Ad vector with a deletion of viral genes necessary for Ad genome replication should block viral DNA replication and decrease viral protein production, resulting in a diminished immune response and extended duration of foreign gene expression in vivo. As a first step toward the generation of such a modified vector, we report the construction of cell lines that not only express the E1 genes but also constitutively express the Ad serotype 2 140-kDa DNA polymerase protein, one of three virally encoded proteins essential for Ad genome replication. The Ad polymerase-expressing cell lines support the replication and growth of H5ts36, an Ad with a temperature-sensitive mutation of the Ad polymerase protein. These packaging cell lines can be used to prepare Ad vectors deleted for the E1 and polymerase functions, which should facilitate development of viral vectors for gene therapy of human diseases.