920 resultados para layout-automatico testo-a-fronte VDP
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
An experiment with four treatments was carried out on the experimental area of ADEI to compare three methods of water use requirement: ETc (T1) - irrigation based on crop evapotranspiration (ETc); Tensiometers (T2 and T3) - irrigations were made through reading of tensiometers installed at 40 cm deep and, Control (T4) - only one irrigation to promote the seedlings emergence. Both Class A pan and soil water depletion methods presented good results when the crop was developed without restraint of water. The Katerji method can be utilized in conditions of water restriction. Irrigation frequency was more important than amount of applied water for higher yield.
Resumo:
The aim of this investigation was to evaluate four reference methods to estimate evapotranspiration (Makkink, Hargreaves, Class A pan and Radiation), compared tb Penman-Monteith method, that is considered standard by the Food and Agricultural Organization of the United Nations (FAO). Errors due to variable measurements in the reference evapotranspiration estimate were taken into consideration. The research was developed in an experimental area of the Department of Rural Engieering of the School of Agricultural and Veterinarian Sciences, Campus of Jaboticabal, São Paulo State University. An automated weather station was used and it was equipped with sensors to measure global and net radiation, temperature, relative humidity, and wind speed. The aftermath showed a better adjustment to Hargreaves. Makkink, Class A pan and Radiation methods are different from Penman-Monteith, therefore, they cannot be compared. To evaluate methods to estimate evapotranspiration and avoid possible evaluation errors, ETo estimate errors must be considered.
Resumo:
The aim of this present work was to compare planialtimetric charts obtained from different risings using two different theodolite types, a total station, and a precision level, used as control. Using a total station, an area was marked with clear variations of relief, following a grid, with a distance of 20 meters among stakes. After that, the stakes were read by the total station and two theodolites of different precisions. The geometric leveling was done by a precision level. The data were input in the DataGeosis software and the numerical modelling of the land was made with mesh of maximum rigidity, generating planialtimetric representation for each rising. It was verified, through comparison of the four representations that little variations occur in relation to the control. The closest representation of the control was the planialtimetry based on the data from the total station, in which the representations obtained from the theodolites were identical among themselves. It was concluded that in the process of obtaining detailed planialtimetry of small areas, submitted to the grid, it was not necessary to use composed geometric leveling, reducing work to the exclusive use of a total station or conventional theodolite.
Resumo:
The objective of this work was to implant a geodesic pillar in the campus of Botucatu (Rubião Júnior) of the São Paulo State University (UNESP), using active stations of the Brazilian Net of Continuous Monitoring (RBMC) as reference, aiming at inclusion in the Brazilian Geodesic System (BGS). In the planning of the trace, some aspects of the pillar optimization were considered: the field evaluation, the equipment Receiver GPS Topcon Hiper GGD and the net RBMC were used to trace the height, and the Topcon Tools 6.04 version software was use for the data processing, the ambiguity solution, as well as the treatment of injunctions during the column adjustment. The obtained results allowed the implantation of a more accurate pillar then 1ppm compatible to the RBMC net, meeting the specification of IBGE.
Resumo:
The pressure caused by agricultural machinery traffic many result in soil compactation in no-tillage system. The aim of this work was to evaluate no-tillage system onset,time on some physical properties, index S and organic matter (OM) of an oxysol located in Jaboticabal, Sao Paulo State, Brazil. The experiment had completely randomized split-splot design. The treatments consisted of four no-tillage systems: no-tillage for 2 years, no-tillage for 4 years, no-tillage for 6 years and one natural wooded area. The evaluated layers were: Q-0.10m, 0.10-0.20m and 0.20-030m. The following were determined: soil porosity, soil aggregates, bulk density, index S and organic matter. The results were submitted to variance analysis and when there was a difference between averages, Tukey's test was used to compare them. The natural wooded area showed higher organic matter, macroporosity, hydraulic conductivity and Index S. There was no difference between the studied parameters, showing that the no-tillage system for six years was not enough to change the soil physical property.
Resumo:
The present study aimed to show the spatial distribution of the Rochas watershed (Avaré-SP, Brazil) soil use capacity using the Idrisi geographical information system in order to contribute to a better territorial organization and the planning of the appropriate soil occupation. The obtained results using this methodology showed that most of the Rocha watershed areas are from the following groups: dystrophic yellow-red latosol (36.64%), eutroferric and distroferric red latosol (30.30%) with sandy texture. There was a predominance of areas with slope classes of 0-12%, plain to wavy relief (61.37% of the watershed area) showing that these areas are appropriate for annual culture plantations with wide use of machinery. Most of these areas were classified as class IV (73.79%) as to use capacity. In the studied area the following subclasses of land use capacity were found: IIe, s; IIIe; IVe; IVs; IVe,s; VIe and VIIe. Capacity subclasses IVe; IVe,s; IVs and Vie were the most significant because they are areas that can be used for agriculture but subject to severe soil impoverishment if there are no special care mainly for annual cultures. The Idrisi geographical information system was efficient to determine soil use capacity of the Rocha's watershed showing that the use of geoprocessing tools makes data analysis easier and faster, allowing digital data storage for future analysis uses mainly for territorial planning and environmental studies.
Resumo:
The studies were developed with plants of Eucalyptus urograndis under greenhouse conditions, at Paulista State University (UNESP), Botucatu - SP, from March to July, 2005. The objective was to evaluate hydric stress influence on morphological and physiological characteristics of plants in clayay (1) and medium (2) soil texture. Two water treatment were used: -0.03 and -1.5 MPa minimum soil water potentials (□w). Plants from soil 2 and - 1.5MPa showed 43% reduction on leaf área, 34% on base stem diameter, 54% on aerial vegetal dry matter and plants from soil 1 presented 42.3% reduction on leaf área, 39,5% base stem diameter and 42% dry matter root reduction in relation to -0.03 MPa. The lowest leaf water potential (□f) value was-17.166 MPa on □w = -1.5 MPa and soil 2 and the greatest one on soil 1 and □w = -0.03 MPa., -6.766 MPa. The treatment -0.03MPa showed about 11,3% higher transpiration values than those plants from -1.5MPa. The higher Rs value (2.149 s.cm-1) occurred on plants under -1.5MPa and soil 2. There was significant correlation between Tf and Rs, and the treatmens from medium soil were more sensitive, reaching until 32°C.
Resumo:
The aim of this work was to evaluate the effect of soil compaction caused by tractor wheel traffic on the limiting water range (LLWR), shoot growth and levels of compaction and four replications in a completely randomized experimental design. Soil samples with preserved structure were collected in the layers: 0.02-0.05; 0.08-0.11; 0.15-0.18 and 0.22-0.25m to determine macroporosity, microporosity, total porosity, bulk density, resistance to penetration and LLWR. The evaluated corn parameters were: plant and first spike height, steam diameter, number of spikes per plant, plant dry matter, dry matter of 1000 seeds and seed productivity. The soil compaction restricted all corn parameters except the number of spikes per plant and dry matter of 1000 seeds. The LLWR was reduced by the soil resistance to penetration, even in the tilled soil with bulk density of 1.12 Mg m-3. Only the treatment with 11 Mg tractor, repeated four times on the area, demonstrated bulk density above critical bulk density in the LLWR that was 1.37 Mg m-3, where the seed productivity was significantly smaller.
Root volume and dry matter of peanut plants as a function of soil bulk density and soil water stress
Resumo:
Soil compaction may be defined as the pressing of soil to make it denser. Soil compaction makes the soil denser, decreases permeability of gas and water exchange as well as alterations in thermal relations, and increases mechanical strength of the soil. Compacted soil can restrict normal root development. Simulations of the root restricting layers in a greenhouse are necessary to develop a mechanism to alleviate soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. This experiment aimed to assess peanut (Arachis hypogea) root volume and root dry matter as a function of bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6g cm-3), and two levels of the soil water content (70 and 90% of field capacity) were used. Treatments were arranged as completely randomized design, with four replications in a 3×2 factorial scheme. The result showed that peanut yield generally responded favorably to subsurface compaction in the presence of high mechanical impedance. This clearly indicates the ability of this root to penetrate the hardpan with less stress. Root volume was not affected by increase in soil bulk density and this mechanical impedance increased root volume when roots penetrated the barrier with less energy. Root growth below the compacted layer (hardpan), was impaired by the imposed barrier. This stress made it impossible for roots to grow well even in the presence of optimum soil water content. Generally soil water content of 70% field capacity (P<0.0001) enhanced greater root proliferation. Nonetheless, soil water content of 90% field capacity in some occasions proved better for root growth. Some of the discrepancies observed were that mechanical impedance is not a good indicator for measuring root growth restriction in greenhouse. Future research can be done using more levels of water to determine the lowest soil water level, which can inhibit plant growth.
Resumo:
The analysis of morphometric characteristics is used to understand the relationship between soil and surface as a result of erosive processes on different structures and lithologies. The objective of this study was to study the morphometric characteristics of Fazenda Gloria watershed from 1983 to 2000, a fourth-order watershed in Taquaritinga Municipality, São Paulo State. The study was based on photointerpretation techniques. Drainage net and the respective watersheds were selected and the morphometric variables were determined. The watersheds consisted of 7 second-order watersheds and 2 third-order watersheds. The morphometric characteristics showed a reduction in the number of segments of first-order rivers and in the length of the drainage net during the study period. These findings could be related to several influences on land development considering occupation and use of land. A different hydrological behavior could also be observed. The analysis of Fazenda Glória Watershed showed that the length of the segment of fourth order river remained constant during the study period.
Resumo:
The need for a rational use of water and supply of food for a growing world population have led to the development of research in the area of irrigation systems. Thus, some irrigation systems which join efficiency with low cost of material have been developed. Although some technical characteristics are provided by the manufacturers, tests are required to verify functioning of the system and uniformity of water distribution. Continuous research on uniformity, characteristics of the materials and design of water distribution systems is essential for system improvement. Therefore, the objective of this work was to evaluate the CV (manufacturer's coefficient of variation) of Amanco microsprinkler (1.0 mm light green nipple) using bench testing in the laboratory of Irrigation at UNESP - FCA campus of Botucatu-SP. Twenty-five microsprinklers in a sequential design were used in the tests. Three flow systems were tested as follows: a Coil system based on serial connected pipes; a Lateral system, the most common system in which secondary lines are fed by a main line; and a Mesh system used in the urban water supply. The results showed that 4.17% CVf met the production standards and the Lateral and Mesh systems were similar regarding outflow using bench testing. The Mesh system presented the highest mean value of outflow and the lowest range of variation.
Resumo:
The objective of this study was to evaluate and compare measurements and estimates from Davis and Campbell Scientific Instruments in two automatic weather stations. Integrity of meteorological data for estimates of evapotranspiration of reference crop (ETo) from both stations was also evaluated. The following meteorological data were evaluated: air temperature, air humidity, wind speed, precipitation, net radiation and global solar radiation. The Penman-Monteith reference method to estimate ETo was evaluated daily. The weather stations were set up in an experimental area of the Rural Engineering Department-FACV/ UNESP, in Jaboticabal, State of Sao Paulo. Data were collected daily and statistical analysis was performed using linear regression analysis. The integrity of meteorological data to estimate ETo was evaluated. The results of the study in the stations using linear regression analysis showed that daily estimates for ETo had acceptable differences. The technique which evaluates the integrity of meteorological data revealed that data of relative humidity from both stations and of precipitation using Campbell Instruments were not good.
Resumo:
In order to evaluate the bean yield under different water table levels as well as the moisture and nitrate distribution in the soil profile, a field experiment was carried out in the experimental area of the College of Agricultural Sciences - UNESP, Botucatu, SP, Brazil. Beans were grown in field lysimeters under five water table depths: 30; 40; 50; 60 and 70 cm. The moisture in the soil profile was determined gravimetrically using samples collected at 10; 20; 30; 40; 50; 60 and 70 cm deep. The water table depths of 30cm and 40cm showed the highest productivities (3,228.4kg.ha-1 and 3,422.1kg.ha-1, respectively), with no statistical differences between them. The highest productivity was related to the two highest water table levels (30 and 40cm), which provided the highest moisture average values on the basis of volume in the soil profile (33.3 e 31%) as well as the consumptive use of water (416 and 396mm). The nitrate content during the bean cycle at the extraction depth of 60cm was below the safe drinking limit of 10mg.1-1 for water table depths of 30; 40; 50 and 60cm, which shows the denitrification efficiency as a way of controlling nitrate pollution in water tables. The management of water table can lead to high levels of bean yield and to a better control of nitrate pollution in underground water.
Resumo:
The objective of this study was to evaluate some physiological parameters in six barley cultivars (Borema, Lagoa, BRS-180, BRS-195, EMB-128 e BRS-225), under water stress in different crop phenological phases. The treatments were as follows: TI - pots constantly irrigated until harvest: T2: - water stress starting from 45 days after sowing (DAS) and T3 - water stress starting from 65 DAS. Leaf resistance to water vapor diffusion (Rs), relative water content (RWC), and leaf water potential (Ψ1) were used to evaluate drought tolerance. Pots were arranged in a randomized block design with four blocks, six barley cultivars, and three treatments, in a total of seventy two pots. The experiment was conducted from August to November 2005 in a polyethylene greenhouse located at the experimental area of Rural Engineering Department - FCA, UNESP - Botucatu - SP. The results showed that all barley cultivars presented some adaptation to water stress, but EMB-128 was the most likely and BRS-180 the least likely to be drought tolerant. The results revealed that only one drought cycle may increase tolerance to drought.