925 resultados para l-amino acid oxidase
Resumo:
Over the past three decades, L-proline has become recognized as an important metabolite for trypanosomatids. It is involved in a number of key processes, including energy metabolism, resistance to oxidative and nutritional stress and osmoregulation. In addition, this amino acid supports critical parasite life cycle processes by acting as an energy source, thus enabling host-cell invasion by the parasite and subsequent parasite differentiation. In this paper, we demonstrate that L-proline is oxidized to Δ(1)-pyrroline-5-carboxylate (P5C) by the enzyme proline dehydrogenase (TcPRODH, E.C. 1.5.99.8) localized in Trypanosoma cruzi mitochondria. When expressed in its active form in Escherichia coli, TcPRODH exhibits a Km of 16.58±1.69 µM and a Vmax of 66±2 nmol/min mg. Furthermore, we demonstrate that TcPRODH is a FAD-dependent dimeric state protein. TcPRODH mRNA and protein expression are strongly upregulated in the intracellular epimastigote, a stage which requires an external supply of proline. In addition, when Saccharomyces cerevisiae null mutants for this gene (PUT1) were complemented with the TcPRODH gene, diminished free intracellular proline levels and an enhanced sensitivity to oxidative stress in comparison to the null mutant were observed, supporting the hypothesis that free proline accumulation constitutes a defense against oxidative imbalance. Finally, we show that proline oxidation increases cytochrome c oxidase activity in mitochondrial vesicles. Overall, these results demonstrate that TcPRODH is involved in proline-dependant cytoprotection during periods of oxidative imbalance and also shed light on the participation of proline in energy metabolism, which drives critical processes of the T. cruzi life cycle.
Resumo:
6-(18)F-fluoro-l-dopa ((18)F-FDOPA) measured with PET as a biomarker of amino acid uptake has been investigated in brain tumor imaging. The aims of the current study were to determine whether the degree of (18)F-FDOPA uptake in brain tumors predicted tumor grade and was associated with tumor proliferative activity in newly diagnosed and recurrent gliomas.
Resumo:
Complete genome sequences were determined for two distinct strains of slow bee paralysis virus (SBPV) of honeybees (Apis mellifera). The SBPV genome is approximately 9 5 kb long and contains a single ORF flanked by 5'- and 3'-UTRs and a naturally polyadenylated 3' tail, with a genome organization typical of members of the family Iflaviridae The two strains, labelled `Rothamsted' and 'Harpenden', are 83% identical at the nucleotide level (94% identical at the amino acid level), although this variation is distributed unevenly over the genome. The two strains were found to co-exist at different proportions in two independently propagated SBPV preparations The natural prevalence of SBPV for 847 colonies in 162 apiaries across five European countries was <2%, with positive samples found only in England and Switzerland, in colonies with variable degrees of Varroa infestation
Resumo:
P450 oxidoreductase (POR) is the electron donor for all microsomal P450s including steroidogenic enzymes CYP17A1, CYP19A1 and CYP21A2. We found a novel POR mutation P399_E401del in two unrelated Turkish patients with 46,XX disorder of sexual development. Recombinant POR proteins were produced in yeast and tested for their ability to support steroid metabolizing P450 activities. In comparison to wild-type POR, the P399_E401del protein was found to decrease catalytic efficiency of 21-hydroxylation of progesterone by 68%, 17α-hydroxylation of progesterone by 76%, 17,20-lyase action on 17OH-pregnenolone by 69%, aromatization of androstenedione by 85% and cytochrome c reduction activity by 80%. Protein structure analysis of the three amino acid deletion P399_E401 revealed reduced stability and flexibility of the mutant. In conclusion, P399_E401del is a novel mutation in POR that provides valuable genotype-phenotype and structure-function correlation for mutations in a different region of POR compared to previous studies. Characterization of P399_E401del provides further insight into specificity of different P450s for interaction with POR as well as nature of metabolic disruptions caused by more pronounced effect on specific P450s like CYP17A1 and aromatase.
Resumo:
L-type calcium channels are composed of a pore, alpha1c (Ca(V)1.2), and accessory beta- and alpha2delta-subunits. The beta-subunit core structure was recently resolved at high resolution, providing important information on many functional aspects of channel modulation. In this study we reveal differential novel effects of five beta2-subunits isoforms expressed in human heart (beta(2a-e)) on the single L-type calcium channel current. These splice variants differ only by amino-terminal length and amino acid composition. Single-channel modulation by beta2-subunit isoforms was investigated in HEK293 cells expressing the recombinant L-type ion conducting pore. All beta2-subunits increased open probability, availability, and peak current with a highly consistent rank order (beta2a approximately = beta2b > beta2e approximately = beta2c > beta2d). We show graded modulation of some transition rates within and between deep-closed and inactivated states. The extent of modulation correlates strongly with the length of amino-terminal domains. Two mutant beta2-subunits that imitate the natural span related to length confirm this conclusion. The data show that the length of amino termini is a relevant physiological mechanism for channel closure and inactivation, and that natural alternative splicing exploits this principle for modulation of the gating properties of calcium channels.
Resumo:
Vitamin B$\sb6$ (or pyridoxal 5$\sp\prime$-phosphate, PLP) is an essential, ubiquitous coenzyme that affects many aspects of amino acid and cellular metabolism in all organisms. The goal of this thesis is to examine the regulation of PLP biosynthesis in Escherichia coli K-12. First, PdxH oxidase is a PLP biosynthetic enzyme, which uses molecular oxygen as an electron acceptor under aerobic assay conditions. To test if facultative anaerobic E. coli uses another enzyme to replace the function of PdxH oxidase anaerobically, suppressors of a pdxH null mutant were isolated anaerobically after 2-aminopurine or spontaneous mutagenesis. Only one specific bypass mutation in another PLP biosynthetic gene pdxJ was found, suggesting that PdxH oxidase is able to function anaerobically and PdxT utilizes D-1-deoxyxyulose as a substrate. Second, regulation of the serC (pdxF)-aroA operon, which is involved the biosynthesis of L-serine, PLP and aromatic compounds was examined. A serC (pdxF) single gene transcript and a serC (pdXf)-aroA cotranscript initiated at P$\sb{serC\ (pdxF)}$ upstream of serC (pdxF) were detected. The expression of the operon is activated by leucine responsive regulatory protein (LRP) and repressed by cAMP receptor protein-cAMP complex (CRP$\cdot$cAMP) at the transcriptional level. LRP activates the operon by directly binding to the upstream consensus box. Binding of CRP$\cdot$cAMP to the upstream CRP box diminishes the activation effect of LRP. However, deletion of the CRP box did not affect the repression of CRP$\cdot$cAMP, suggesting that CRP$\cdot$cAMP may repress the operon indirectly by stimulating the activity or level of an unidentified repressor. The overall effect of this regulation is to maximize the expression of the operon when the cells are growing in minimal-glucose medium. In addition, the binding and the transcription of P$\sb{serC\ (pdxF)}$ by RNA polymerase require a supercoiled circular DNA, indicating that DNA supercoiling affects the transcription of the operon. Third, regulation of another PLP biosynthetic gene gapB was also examined. gapB is activated by CRP$\cdot$cAMP and repressed by catabolic repressor activator protein (CRA). However, the activation of CRP$\cdot$cAMP is epistatic to the repression of CRA. Due to the CRA repression, gapB was expressed at a low level in all the media tested, suggesting that it may be the rate-limiting step of PLP biosynthesis. In summary, unlike genes in many biosynthetic pathways, PLP biosynthetic genes are regulated by global regulators that are important for carbon and amino acid metabolism, instead of the end product(s) of the pathway. ^
Resumo:
Sites 790 and 791 lie in the eastern half graben of the Sumisu Rift, a backarc graben west of the active Izu-Bonin arc volcanoes Sumisu Jima and Tori Shima, at 30°54.96'N, 139°50.66'E, in 2223 m water depth and 30°54.97'N, 139°52.20'E, in 2268 m water depth, respectively. A small decrease in the sulfate concentration in the interstitial waters from these sites suggests fairly low microbial activity by sulfate-reducing bacteria. The values of the dissolved free amino acids (DFAA) in the interstitial waters from both sites range from 1.26 to 6.82 µmol/L, with an average of 3.81 µmol/L. The acidic, basic, neutral, aromatic, and sulfur-containing amino acids have average values of 0.32, 0.50, 2.71, 0.15, and 0.09 µmol/L, respectively. The relative abundances of the acidic, basic, neutral, aromatic, and sulfur-containing amino acids average 8, 13,72, 4, and 1 mol%, respectively. Glycine, serine, alanine, ornithine, and aspartic acid are major constituent amino acids. The dissolved combined amino acids (DCAA) values range between 1.25 and 44.35 µmol/L, with an average of 10.36 µmol/L. The mean concentrations and relative abundances of the acidic, basic, neutral, aromatic, and sulfur-containing amino acids are 2.29 (22 mol%), 0.60 (6 mol%), 6.70 (65 mol%), 0.09 (1 mol%), and 0.00 µmol/L (0 mol%), respectively. Glycine is the most abundant amino acid residue, followed by glutamic acid, serine, and alanine. The predominance of DCAA over DFAA present in the interstitial waters from Sites 790 and 791 is consistent with previous results from interstitial-water and seawater analyses. The most plausible source for the DCAA is biogenic calcareous debris. A much greater depletion of aspartic acid and the basic fraction, except for ornithine, is found in the DCAA. The decomposition of the basic amino acid fraction or its incorporation to clay minerals would result in a decrease in its relative abundance, whereas ornithine is produced during early diagenesis. The characteristics of the amino acids in the interstitial waters are (1) a greater depletion of the acidic amino acid fraction in the DFAA than in the DCAA and (2) the enrichment of glycine and serine in both. The adsorption or reaction of the amino acids in interstitial waters with biogenic carbonates would be responsible for the lower relative abundance of the acidic fraction of the DFAA. The production of glycine during early diagenesis and its stability in solution would raise its relative abundance in the interstitial waters.
Resumo:
Total organic carbon (TOC), dissolved organic carbon (DOC), total hydrolyzable amino acids (THAA), amino sugars (THAS), and carbohydrates (THCHO) were measured in sediments and interstitial waters from Site 681 (ODP Leg 112). TOC concentrations vary between 0.75% and 8.2% by weight of dry sediment and exhibit a general decrease with depth. DOC concentrations range from 6.1 to 49.5 mg/L, but do not correlate with TOC concentrations in the sediment. Amino compounds (AA and AS) and sugars account for 0.5% to 8% and 0.5% to 3% of TOC, respectively, while amino compounds make up between 2% and 27% of total nitrogen. Dissolved hydrolyzable amino acids (free and combined) and amino sugars were found in concentrations from 3.7 to 150 µM and from 0.1 to 3.7 µM, respectively, and together account for an average of 8.5% of DOC. Dissolved hydrolyzable carbohydrates are in the range of 6 to 49 µM. Amino acid spectra are dominated by glycine, alanine, leucine, and phenylalanine; nonproteinaceous amino acids (gamma-amino butyric acid, beta-alanine, and ornithine) are enriched in the deeper part of the section, gamma-amino butyric acid and beta-alanine are thought to be indicators of continued microbial degradation of TOC. Glycine, serine, glutamic acid, alanine, aspartic acid, and ornithine are the dominating amino compounds in the pore waters. Spectra of carbohydrates in sediments are dominated by glucose, galactose, and mannose, while dissolved sugars are dominated by glucose and fructose. In contrast to the lack of correlation between abundances of bulk TOC and DOC in corresponding interstitial waters, amino compounds and sugars do show some correlation between sediments and pore waters: A depth increase of aspartic acid, serine, glycine, and glutamic acid in the pore waters is reflected in a decrease in the sediment, while an enrichment in valine, iso-leucine, leucine, and phenylalanine in the sediment is mirrored by a decrease in the interstitial waters. The distribution of individual hexoseamines appears to be related to zones of bacterial decomposition of organic matter. Low glucoseamine to galactoseamine ratios coincide with zones of sulfate depletion in the interstitial waters.
Resumo:
Site 695 lies on the southeast margin of the South Orkney microcontinent on the northern margin of the Weddell Sea, at 62°23.48'S, 43°27.10'W in 1305 m water depth. The inorganic properties of interstitial waters at this site, including sulfate reduction, biogenic methane production, and high concentrations of ammonia and phosphate, imply high microbial activity. However, no clear relationship between amino acid composition and concentration and the type of microbial activity (e.g., sulfate reduction or methane production) can be identified. The THAA (total hydrolyzable amino acids) values range between 2.45 and 17.31 µmol/L, averaging 7.14 µmol/L. The mean concentrations and relative abundance values of acidic, basic, neutral, aromatic, and sulfur-containing amino acids are 1.34 (18%), 1.09 (15%), 3.93 (54%), 0.50 (8%), and 0.02 (0%) µmol/L, respectively. Glycine is the most abundant amino acid residue, with serine, glutamic acid, and ornithine next. The DFAA (dissolved free amino acids) values range from 0.10 to 12.73 µmol/L, averaging 4.07 µmol/L. The acidic, basic, neutral, aromatic, and sulfurcontaining amino acids are on average 0.21, 0.79, 2.56, 0.41, and 0.01 µmol/L, respectively. The relative abundances of acidic, basic, neutral, and aromatic amino acids average 4%, 18%, 58%, and 15%, respectively. Predominance of DFAA over DCAA (dissolved combined amino acids) in interstitial waters of Lithologic Units I and II is contrary to the predominance of DCAA over DFAA in other interstitial waters and seawater. The comparison of amino acid compositions between DCAA and siliceous plankton suggests that the DCAA in interstitial waters originally comes from amino acids derived from siliceous plankton. However, other sources which are much enriched in glutamic acid contribute to the DCAA composition.
Resumo:
We report the characterization of a maize Wee1 homologue and its expression in developing endosperm. Using a 0.8-kb cDNA from an expressed sequence tag project, we isolated a 1.6-kb cDNA (ZmWee1), which encodes a protein of 403 aa with a calculated molecular size of 45.6 kDa. The deduced amino acid sequence shows 50% identity to the protein kinase domain of human Wee1. Overexpression of ZmWee1 in Schizosaccharomyces pombe inhibited cell division and caused the cells to enlarge significantly. Recombinant ZmWee1 obtained from Escherichia coli is able to inhibit the activity of p13suc1-adsorbed cyclin-dependent kinase from maize. ZmWee1 is encoded by a single gene at a locus on the long arm of chromosome 4. RNA gel blots showed the ZmWee1 transcript is about 2.4 kb in length and that its abundance reaches a maximum 15 days after pollination in endosperm tissue. High levels of expression of ZmWee1 at this stage of endosperm development imply that ZmWee1 plays a role in endoreduplication. Our results show that control of cyclin-dependent kinase activity by Wee1 is conserved among eukaryotes, from fungi to animals and plants.
Resumo:
Activation of pro-phenol oxidase (proPO) in insects and crustaceans is important in defense against wounding and infection. The proPO zymogen is activated by a specific proteolytic cleavage. PO oxidizes phenolic compounds to produce quinones, which may help to kill pathogens and can also be used for synthesis of melanin to seal wounds and encapsulate parasites. We have isolated from the tobacco hornworm, Manduca sexta, a serine proteinase that activates proPO, and have cloned its cDNA. The isolated proPO activating proteinase (PAP) hydrolyzed artificial substrates but required other protein factors for proPO activation, suggesting that proPO-activating enzyme may exist as a protein complex, one component of which is PAP. PAP (44 kDa) is composed of two disulfide-linked polypeptide chains (31 kDa and 13 kDa). A cDNA for PAP was isolated from a hemocyte library, by using a PCR-generated probe based on the amino-terminal amino acid sequence of the 31-kDa catalytic domain. PAP belongs to a family of arthropod serine proteinases containing a carboxyl-terminal proteinase domain and an amino-terminal “clip” domain. The member of this family most similar in sequence to PAP is the product of the easter gene from Drosophila melanogaster. PAP mRNA was present at a low level in larval hemocytes and fat body, but became much more abundant in fat body after insects were injected with Escherichia coli. Sequence data and 3H-diisopropyl fluorphosphate labeling results suggest that the same PAP exists in hemolymph and cuticle.
Resumo:
With the aim of improving the nutritive value of an important grain legume crop, a chimeric gene specifying seed-specific expression of a sulfur-rich, sunflower seed albumin was stably transformed into narrow-leafed lupin (Lupinus angustifolius L.). Sunflower seed albumin accounted for 5% of extractable seed protein in a line containing a single tandem insertion of the transferred DNA. The transgenic seeds contained less sulfate and more total amino acid sulfur than the nontransgenic parent line. This was associated with a 94% increase in methionine content and a 12% reduction in cysteine content. There was no statistically significant change in other amino acids or in total nitrogen or total sulfur contents of the seeds. In feeding trials with rats, the transgenic seeds gave statistically significant increases in live weight gain, true protein digestibility, biological value, and net protein utilization, compared with wild-type seeds. These findings demonstrate the feasibility of using genetic engineering to improve the nutritive value of grain crops.