969 resultados para joint X and R charts
Resumo:
Purpose: Cervical foraminal injection performed with a direct foraminal approach may induce serious neurologic complications. We describe a technique of CT-guided cervical facet joint (CFJ) injection as an indirect foraminal injection, including feasibility and diffusion pathways of the contrast agent. Methods and materials: Retrospective study included 84 punctures in 65 consecutive patients presenting neck pain and/or radiculopathy related to osteoarthritis or soft disc herniation. CT images were obtained from C2 to T1 in supine position, with a metallic landmark on the skin. CFJ punctures were performed by MSK senior radiologists with a lateral approach. CT control of the CFJ opacification was performed after injections of contrast agent (1 ml), followed by slow-acting corticosteroid (25 mg). CFJ opacification was considered as successful when joint space and/or capsular recess opacification occurred. The diffusion of contrast agent in foraminal and epidural spaces was recorded. We assessed the epidural diffusion both on axial and sagittal images, with a classification in two groups (small diffusion or large diffusion). Results: CFJ opacification was successful in 82% (69/84). An epidural and/or foraminal opacification was obtained in 74% (51/69). A foraminal opacification occurred in 92% (47/51) and an epidural opacification in 63% (32/51), with small diffusion in 47% (15/32) and large diffusion in 53% (17/32). No complication occurred. Conclusion: CT- guided CFJ injection is easy to perform and safe. It is most often successful, with a frequent epidural and/or foraminal diffusion of the contrast agent. This technique could be an interesting and safe alternative to foraminal cervical injection.
Resumo:
Spore germination in Rhizopogon abietis, R. luteolus, R. roseolus and R. villosulus was induced in the presence of Rhodotorula glutinis and activated charcoal, in agar medium (N6:5). In one R. roseolus sample, 51% of spores germinated within 35 days, allowing observation of the course of spore germination and the different developmental patterns of homokaryotic mycelia. In these plates, spores showed two times of germination. The spores that germinated early produced an apical germ tube. Later other spores germinated in proximity to young mycelium, by forming a germ vesicle. One of the hyphal growth patterns obtained (interruption-swelling-ramification) is similar to that reported for other fungi. With this technique for inducing spore germination, it is possible to obtain enough monosporic cultures to perform mating tests. Key words: Basidiomycotina, Hypogeous, Monosporic Cultures.
Resumo:
Natural selection favors alleles that increase the number of offspring produced by their carriers. But in a world that is inherently uncertain within generations, selection also favors alleles that reduce the variance in the number of offspring produced. If previous studies have established this principle, they have largely ignored fundamental aspects of sexual reproduction and therefore how selection on sex-specific reproductive variance operates. To study the evolution and consequences of sex-specific reproductive variance, we present a population-genetic model of phenotypic evolution in a dioecious population that incorporates previously neglected components of reproductive variance. First, we derive the probability of fixation for mutations that affect male and/or female reproductive phenotypes under sex-specific selection. We find that even in the simplest scenarios, the direction of selection is altered when reproductive variance is taken into account. In particular, previously unaccounted for covariances between the reproductive outputs of different individuals are expected to play a significant role in determining the direction of selection. Then, the probability of fixation is used to develop a stochastic model of joint male and female phenotypic evolution. We find that sex-specific reproductive variance can be responsible for changes in the course of long-term evolution. Finally, the model is applied to an example of parental-care evolution. Overall, our model allows for the evolutionary analysis of social traits in finite and dioecious populations, where interactions can occur within and between sexes under a realistic scenario of reproduction.
Resumo:
This paper presents automated segmentation of structuresin the Head and Neck (H\&N) region, using an activecontour-based joint registration and segmentation model.A new atlas selection strategy is also used. Segmentationis performed based on the dense deformation fieldcomputed from the registration of selected structures inthe atlas image that have distinct boundaries, onto thepatient's image. This approach results in robustsegmentation of the structures of interest, even in thepresence of tumors, or anatomical differences between theatlas and the patient image. For each patient, an atlasimage is selected from the available atlas-database,based on the similarity metric value, computed afterperforming an affine registration between each image inthe atlas-database and the patient's image. Unlike manyof the previous approaches in the literature, thesimilarity metric is not computed over the entire imageregion; rather, it is computed only in the regions ofsoft tissue structures to be segmented. Qualitative andquantitative evaluation of the results is presented.
Resumo:
Most pavement contraction joint seals in Iowa, in general, have been performing in less than a satisfactory manner. The effective life of the seals, in maintaining a watertight joint, has been only from two to five years. In search of improvements, research was proposed to evaluate preformed neoprene joint seals. The performance of those seals was to be compared mainly with the hot poured rubberized asphalt sealants and cold applied silicone sealants or other sealants commonly used at the time this research began. Joint designs and methods of sawing were also investigated. All evaluations were done in new portland cement concrete (PCC) pavements. Three projects were initially selected and each included a research section of joint sealing. Some additional sites were later added for evaluation. Several joint sealants were evaluated at each research site. The various sites included high, medium and low levels of traffic. Evaluations were done over a five-year period. Neoprene joint seals provided better performance than hot or cold field formed joints.
Resumo:
OBJECTIVE: To determine if the results of resin-dentin microtensile bond strength (µTBS) is correlated with the outcome parameters of clinical studies on non-retentive Class V restorations. METHODS: Resin-dentin µTBS data were obtained from one test center; the in vitro tests were all performed by the same operator. The µTBS testing was performed 8h after bonding and after 6 months of storing the specimens in water. Pre-test failures (PTFs) of specimens were included in the analysis, attributing them a value of 1MPa. Prospective clinical studies on cervical restorations (Class V) with an observation period of at least 18 months were searched in the literature. The clinical outcome variables were retention loss, marginal discoloration and marginal integrity. Furthermore, an index was formulated to be better able to compare the laboratory and clinical results. Estimates of adhesive effects in a linear mixed model were used to summarize the clinical performance of each adhesive between 12 and 36 months. Spearman correlations between these clinical performances and the µTBS values were calculated subsequently. RESULTS: Thirty-six clinical studies with 15 adhesive/restorative systems for which µTBS data were also available were included in the statistical analysis. In general 3-step and 2-step etch-and-rinse systems showed higher bond strength values than the 2-step/3-step self-etching systems, which, however, produced higher values than the 1-step self-etching and the resin modified glass ionomer systems. Prolonged water storage of specimens resulted in a significant decrease of the mean bond strength values in 5 adhesive systems (Wilcoxon, p<0.05). There was a significant correlation between µTBS values both after 8h and 6 months of storage and marginal discoloration (r=0.54 and r=0.67, respectively). However, the same correlation was not found between µTBS values and the retention rate, clinical index or marginal integrity. SIGNIFICANCE: As µTBS data of adhesive systems, especially after water storage for 6 months, showed a good correlation with marginal discoloration in short-term clinical Class V restorations, longitudinal clinical trials should explore whether early marginal staining is predictive for future retention loss in non-carious cervical restorations.
Resumo:
BACKGROUND: Microalbuminuria (MA) has been shown to be an early biomarker of renal damage. It is postulated that MA is the early result of hyperfiltration, which could evolve into glomerular sclerosis and renal failure if hyperfiltration is left untreated. We hypothesized that MA is a good indicator of hyperfiltration in children with kidney disorders, obviating the need to calculate the filtration fraction (FF). METHODS: A total of 155 children or young adults were prospectively included [42 single kidney (SK), 61 vesico-ureteral reflux, 23 obstructive uropathies, 29 other kidney diseases]. We measured inulin, para-aminohippuric acid clearances, FF and MA. Prediction of hyperfiltration was explored by studying the association between the FF and other variables such as urinary albumin (Alb), urinary albumin-creatinine ratio (ACR) and creatinine clearance. RESULTS: A significant but weak association between urinary Alb or ACR and FF was found in subjects with an SK (Spearman correlation coefficients 0.32 and 0.19, respectively). Multivariate analysis also showed that urinary Alb and ACR significantly predict FF only in subjects with an SK (r(2) = 0.17, P = 0.01 and r(2) = 0.13, P = 0.02, respectively). This holds true only in subjects with an SK and inulin clearance >90 mL/min/1.73 m(2) (r(2) = 0.41, P < 0.001). There was no association between creatinine clearance and FF. CONCLUSIONS: MA is not associated with FF in our subjects with nephro-urological disorders, except in those with an SK, where the association is weak, indicating that MA is due to other mechanisms than high FF and cannot predict hyperfiltration in such groups.
Resumo:
Compatibility between Eucalyptus dunnii and the ectomycorrhizal fungi Hysterangium gardneri and Pisolithus sp. - from Eucalyptus spp. -, Rhizopogon nigrescens and Suillus cothurnatus - from Pinus spp.-, was studied in vitro. Pisolithus sp., H. gardneri and S. cothurnatus colonized the roots. Pisolithus sp. mycorrhizas presented mantle and Hartig net, while H. gardneri and S. cothurnatus mycorrhizas presented only mantle. S. cothurnatus increased phenolics level on roots. Pisolithus sp. and R. nigrescens decreased the level of these substances. The isolates from Eucalyptus seem to be more compatible towards E. dunnii than those from Pinus. The mechanisms involved could be related, at least in the cases of Pisolithus and Suillus, to the concentration of phenolics in roots.
Resumo:
The objective of this research was to evaluate the performance of portland cement concrete pavement contraction joints utilizing a variety of sealants and joint preparations and to identify an effective sealant system. The variables evaluated were: (1) sealant material; (2) joint preparation; (3) size of saw cut (sealant reservoir); and (4) the use of backing material. This progress report contains project results to date.
Resumo:
Address sustainability in all efforts. Sustainability should be at the core of all levels of homeland security and emergency management effort in Iowa. Capabilities need to be built for the long term, and without a sustainability plan in place, projects can quickly deplete uncertain levels of funding. Utilize an all-hazards methodology. Developing capabilities that are effective during a variety of disaster and emergency scenarios represents sound planning and resource management. Enhance capabilities through joint planning, training and exercise. Effective capabilities developed through coordinated planning efforts and an ongoing joint training and exercising program to ensure sustainment of prepared response. Utilize a collaborative approach to build capability. We will utilize whatever partnerships are necessary to build capability in the most effective manner possible. Regional partnerships have been, and will continue to be, in the forefront of the State of Iowa’s efforts to build and enhance capability. Enhance statewide capabilities. Whenever possible, we will identify and augment existing resources to provide statewide capability during a disaster or terrorist attack. Awareness, outreach and education. Open communication is critical to the success of any initiative. All projects implemented will have awareness, education and outreach components to ensure that all stakeholders are informed as to their responsibilities, capabilities and access. Information sharing and a common operating picture. The timely exchange of critical/actionable information is imperative to the success of every operation. The identification of a common operating picture allows decision makers to make informed decisions based on a unified understanding of the events around them.
Resumo:
Background/Purpose: Since the end of 2009, an ultrasound scoring call SONAR has been implemented for RA patients as a routine tool in the SCQM registry (Swiss Clinical Quality Management registry for rheumatic diseases). A cross-sectional evaluation of patients with active disease and clinical remission according to the DAS28ESR and the novel ACR/EULAR remission criteria from 2010 clearly indicated a good correlational external validity of synovial pathologies with clinical disease activity in RA (2012 EULAR meeting. Objective: of this study was to evaluate the sensitivity to change of B-mode and Power-Doppler scores in a longitudinal perspective along with the changes in DAS28ESR in two consecutive visits among the patients included in the SCQM registry Methods: All patients who had at least two SONAR scores and simultaneous DAS28ESR evaluations between December 2009 and June 2012 were included in this study. The data came from 20 different operators working mostly in hospitals but also in private practices, who had received a previous teaching over 3 days in a reference center. The SONAR score includes a semi-quantitative B mode and Power-Doppler evaluation of 22 joints from 0 to 3, maximum 66 points for each score. The selection of these 22 joints was done in analogy to a 28 joint count and further restricted to joint regions with published standard ultrasound images. Both elbows and wrist joints were dynamically scanned from the dorsal and the knee joints from a longitudinal suprapatellar view in flexion and in joint extension. The bilateral evaluation of the second to fifth metacarpophalangeal and proximal interphalangeal joints was done from a palmar view in full extension, and the Power-Doppler scoring from a dorsal view with hand and finger position in best relaxation. Results: From the 657 RA patients with at least one score performed, 128 RA patients with 2 or more consultations of DAS28ESR, and a complete SONAR data set could be included. The mean (SD) time between the two evaluations was 9.6 months (54). The mean (SD) DAS28ESR was: 3.5 (1.3) at the first visit and was significantly lower (mean 3.0, SD.2.0, p:_0.0001) at the second visit. The mean (SD) of the total B mode was 12 (9.5) at baseline and 9.6 (7.6) at follow-up (p_0.0004). The Power-Doppler score at entry was 2.9 (5.7) and 1.9 (3.6), at the second visit, p _0.0001. The Pearson r correlation between change in DAS28ESR and the B mode was 0.44 (95% CI: 0.29, 0.57, p_ 0.0001),and 0.35 (95% CI: 0.16, 0.50, p _ 0.0002) for the Power-Doppler score,. Clinical relevant change in DAS (_1.1) was associated with a change of total B mode score _3 in 23/32 patients and a change a Doppler score _0.5 in 19/26. Conclusion: This study confirms that the SONAR score is sensitive to change and provides a complementary method of assessing RA disease activity to the DAS that could be very useful in daily practice.
Resumo:
Gene set enrichment (GSE) analysis is a popular framework for condensing information from gene expression profiles into a pathway or signature summary. The strengths of this approach over single gene analysis include noise and dimension reduction, as well as greater biological interpretability. As molecular profiling experiments move beyond simple case-control studies, robust and flexible GSE methodologies are needed that can model pathway activity within highly heterogeneous data sets. To address this challenge, we introduce Gene Set Variation Analysis (GSVA), a GSE method that estimates variation of pathway activity over a sample population in an unsupervised manner. We demonstrate the robustness of GSVA in a comparison with current state of the art sample-wise enrichment methods. Further, we provide examples of its utility in differential pathway activity and survival analysis. Lastly, we show how GSVA works analogously with data from both microarray and RNA-seq experiments. GSVA provides increased power to detect subtle pathway activity changes over a sample population in comparison to corresponding methods. While GSE methods are generally regarded as end points of a bioinformatic analysis, GSVA constitutes a starting point to build pathway-centric models of biology. Moreover, GSVA contributes to the current need of GSE methods for RNA-seq data. GSVA is an open source software package for R which forms part of the Bioconductor project and can be downloaded at http://www.bioconductor.org.
Resumo:
Persistence in canine distemper virus (CDV) infection is correlated with very limited cell-cell fusion and lack of cytolysis induced by the neurovirulent A75/17-CDV compared to that of the cytolytic Onderstepoort vaccine strain. We have previously shown that this difference was at least in part due to the amino acid sequence of the fusion (F) protein (P. Plattet, J. P. Rivals, B. Zuber, J. M. Brunner, A. Zurbriggen, and R. Wittek, Virology 337:312-326, 2005). Here, we investigated the molecular mechanisms of the neurovirulent CDV F protein underlying limited membrane fusion activity. By exchanging the signal peptide between both F CDV strains or replacing it with an exogenous signal peptide, we demonstrated that this domain controlled intracellular and consequently cell surface protein expression, thus indirectly modulating fusogenicity. In addition, by serially passaging a poorly fusogenic virus and selecting a syncytium-forming variant, we identified the mutation L372W as being responsible for this change of phenotype. Intriguingly, residue L372 potentially is located in the helical bundle domain of the F(1) subunit. We showed that this mutation drastically increased fusion activity of F proteins of both CDV strains in a signal peptide-independent manner. Due to its unique structure even among morbilliviruses, our findings with respect to the signal peptide are likely to be specifically relevant to CDV, whereas the results related to the helical bundle add new insights to our growing understanding of this class of F proteins. We conclude that different mechanisms involving multiple domains of the neurovirulent A75/17-CDV F protein act in concert to limit fusion activity, preventing lysis of infected cells, which ultimately may favor viral persistence.
Resumo:
BACKGROUND: Transcranial Doppler (TCD) pulsatility index (PI) has traditionally been interpreted as a descriptor of distal cerebrovascular resistance (CVR). We sought to evaluate the relationship between PI and CVR in situations, where CVR increases (mild hypocapnia) and decreases (plateau waves of intracranial pressure-ICP). METHODS: Recordings from patients with head-injury undergoing monitoring of arterial blood pressure (ABP), ICP, cerebral perfusion pressure (CPP), and TCD assessed cerebral blood flow velocities (FV) were analyzed. The Gosling pulsatility index (PI) was compared between baseline and ICP plateau waves (n = 20 patients) or short term (30-60 min) hypocapnia (n = 31). In addition, a modeling study was conducted with the "spectral" PI (calculated using fundamental harmonic of FV) resulting in a theoretical formula expressing the dependence of PI on balance of cerebrovascular impedances. RESULTS: PI increased significantly (p < 0.001) while CVR decreased (p < 0.001) during plateau waves. During hypocapnia PI and CVR increased (p < 0.001). The modeling formula explained more than 65% of the variability of Gosling PI and 90% of the variability of the "spectral" PI (R = 0.81 and R = 0.95, respectively). CONCLUSION: TCD pulsatility index can be easily and quickly assessed but is usually misinterpreted as a descriptor of CVR. The mathematical model presents a complex relationship between PI and multiple haemodynamic variables.
Resumo:
Blowing and drifting of snow is a major concern for transportation efficiency and road safety in regions where their development is common. One common way to mitigate snow drift on roadways is to install plastic snow fences. Correct design of snow fences is critical for road safety and maintaining the roads open during winter in the US Midwest and other states affected by large snow events during the winter season and to maintain costs related to accumulation of snow on the roads and repair of roads to minimum levels. Of critical importance for road safety is the protection against snow drifting in regions with narrow rights of way, where standard fences cannot be deployed at the recommended distance from the road. Designing snow fences requires sound engineering judgment and a thorough evaluation of the potential for snow blowing and drifting at the construction site. The evaluation includes site-specific design parameters typically obtained with semi-empirical relations characterizing the local transport conditions. Among the critical parameters involved in fence design and assessment of their post-construction efficiency is the quantification of the snow accumulation at fence sites. The present study proposes a joint experimental and numerical approach to monitor snow deposits around snow fences, quantitatively estimate snow deposits in the field, asses the efficiency and improve the design of snow fences. Snow deposit profiles were mapped using GPS based real-time kinematic surveys (RTK) conducted at the monitored field site during and after snow storms. The monitored site allowed testing different snow fence designs under close to identical conditions over four winter seasons. The study also discusses the detailed monitoring system and analysis of weather forecast and meteorological conditions at the monitored sites. A main goal of the present study was to assess the performance of lightweight plastic snow fences with a lower porosity than the typical 50% porosity used in standard designs of such fences. The field data collected during the first winter was used to identify the best design for snow fences with a porosity of 50%. Flow fields obtained from numerical simulations showed that the fence design that worked the best during the first winter induced the formation of an elongated area of small velocity magnitude close to the ground. This information was used to identify other candidates for optimum design of fences with a lower porosity. Two of the designs with a fence porosity of 30% that were found to perform well based on results of numerical simulations were tested in the field during the second winter along with the best performing design for fences with a porosity of 50%. Field data showed that the length of the snow deposit away from the fence was reduced by about 30% for the two proposed lower-porosity (30%) fence designs compared to the best design identified for fences with a porosity of 50%. Moreover, one of the lower-porosity designs tested in the field showed no significant snow deposition within the bottom gap region beneath the fence. Thus, a major outcome of this study is to recommend using plastic snow fences with a porosity of 30%. It is expected that this lower-porosity design will continue to work well for even more severe snow events or for successive snow events occurring during the same winter. The approach advocated in the present study allowed making general recommendations for optimizing the design of lower-porosity plastic snow fences. This approach can be extended to improve the design of other types of snow fences. Some preliminary work for living snow fences is also discussed. Another major contribution of this study is to propose, develop protocols and test a novel technique based on close range photogrammetry (CRP) to quantify the snow deposits trapped snow fences. As image data can be acquired continuously, the time evolution of the volume of snow retained by a snow fence during a storm or during a whole winter season can, in principle, be obtained. Moreover, CRP is a non-intrusive method that eliminates the need to perform man-made measurements during the storms, which are difficult and sometimes dangerous to perform. Presently, there is lots of empiricism in the design of snow fences due to lack of data on fence storage capacity on how snow deposits change with the fence design and snow storm characteristics and in the estimation of the main parameters used by the state DOTs to design snow fences at a given site. The availability of such information from CRP measurements should provide critical data for the evaluation of the performance of a certain snow fence design that is tested by the IDOT. As part of the present study, the novel CRP method is tested at several sites. The present study also discusses some attempts and preliminary work to determine the snow relocation coefficient which is one of the main variables that has to be estimated by IDOT engineers when using the standard snow fence design software (Snow Drift Profiler, Tabler, 2006). Our analysis showed that standard empirical formulas did not produce reasonable values when applied at the Iowa test sites monitored as part of the present study and that simple methods to estimate this variable are not reliable. The present study makes recommendations for the development of a new methodology based on Large Scale Particle Image Velocimetry that can directly measure the snow drift fluxes and the amount of snow relocated by the fence.