979 resultados para internal organization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aureins are a family of peptides (13-25 residues), some of which possess potent antimicrobial and anti-cancer properties, which have been classified into 5 subgroups based upon primary structural similarities. They were originally isolated from the defensive skin secretions of the closely related Australian bell frogs, Litoria aurea and Litoria raniformis, and of the 23 aurein peptides identified, 10 are common to both species. Using a recently developed technique, we have constructed a cDNA library from the defensive secretion of the green and golden bell frog, L. aurea, and successfully cloned a range of aurein precursor transcripts containing entire open-reading frames. All open-reading frames consisted of a putative signal peptide and an acidic pro-region followed by a single copy of aurein. The deduced precursor structures for the most active aureins (2.2 and 3.1) confirmed the presence of a C-terminal amidation motif whereas that of aurein 5.3 did not. Processed peptides corresponding in molecular mass to aureins 2.2, 2.3, 2.5, 3.1 and 5.3 were identified in the same secretion sample using LC/MS. The application of this technique thus permits parallel peptidomic and transcriptomic analyses on the same lyophilized skin secretion sample circumventing sacrifice of specimens of endangered herpetofauna.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phalloidin-fluorescein isothiocyanate staining of filamentous actin was used to identify muscle systems within the cercariae of Schistosoma mansoni. Examination of labeled cercariae by confocal scanning laser microscopy revealed distinct organizational levels of myofiber arrangements within the body wall, anterior cone, acetabulum, and esophagus. The body wall throughout showed a typical latticelike arrangement of outer circular and inner longitudinal myofibers, with an additional innermost layer of diagonal fibers in the anterior portion of the body. Circular and longitudinal fibers were also evident in the anterior organ and esophagus and. to some extent, the ventral acetabulum. Most striking was the striation of the cercarial tail musculature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaching to visual targets engages the nervous system in a series of transformations between sensory information and motor commands. That which remains to be determined is the extent to which the processes that mediate sensorimotor adaptation to novel environments engage neural circuits that represent the required movement in joint-based or muscle-based coordinate systems. We sought to establish the contribution of these alternative representations to the process of visuomotor adaptation. To do so we applied a visuomotor rotation during a center-out isometric torque production task that involved flexion/extension and supination/pronation at the elbow-joint complex. In separate sessions, distinct half-quadrant rotations (i.e., 45°) were applied such that adaptation could be achieved either by only rescaling the individual joint torques (i.e., the visual target and torque target remained in the same quadrant) or by additionally requiring torque reversal at a contributing joint (i.e., the visual target and torque target were in different quadrants). Analysis of the time course of directional errors revealed that the degree of adaptation was lower (by ~20%) when reversals in the direction of joint torques were required. It has been established previously that in this task space, a transition between supination and pronation requires the engagement of a different set of muscle synergists, whereas in a transition between flexion and extension no such change is required. The additional observation that the initial level of adaptation was lower and the subsequent aftereffects were smaller, for trials that involved a pronation–supination transition than for those that involved a flexion–extension transition, supports the conclusion that the process of adaptation engaged, at least in part, neural circuits that represent the required motor output in a muscle-based coordinate system.