990 resultados para independent evolution
Resumo:
Abstract Life history traits encompass all the decisions concerning fitness an individual is faced with during his life. The study of these traits is crucial to understand the factors shaping the biology of living organisms. Up until now, most of the information on the evolution of life history traits comes from laboratory studies. While these studies are interesting to test the effect of specific parameters, their conclusions are difficult to extrapolate to natural populations. Investigating the evolution of life history traits in natural populations is of great interest. This may be tricky because it requires information on reproduction, survival and morphology of individuals. Mark-recapture methods allow most of this information to be obtained. However, when direct observations of a species are not possible due to its ecology, indirect methods must be used to infer lifetime reproductive success. In this case, molecular markers are particularly helpful in assessing the genetic relationships between individuals and allow the construction of a pedigree. This thesis focuses on a natural population of a small insectivorous mammal, the greater white-toothed shrew, Crocidura russula. Because of its hidden lifestyle, the two complementary techniques mentioned above were combined to gather information on this population. The data were used to explore diverse aspects of evolutionary biology. We demonstrated that the high genetic variance displayed by the species was not maintained by its mating system because this shrew was less monogamous than previously thought. The large genetic diversity was most likely promoted by gene flow from the neighborhood. Dispersal was thus a central topic in this thesis. We showed that dispersal was not driven by inbreeding avoidance. In addition, we did not find any inbreeding depression in the population. Dispersal was promoted by a high number of vacant territories in the population for both sexes, meaning that territory acquisition played an important role in driving dispersal. Moreover, dispersal propensity was shown to have a genetic basis and, once achieved, to have no effect on individual fitness. Body mass was found to be a life history trait strongly influenced by sexual and viability selection in both sexes. Larger individuals had higher access to reproduction through territory acquisition and defense than lighter ones. By contrast, intermediate size individuals were favored by viability selection presumably because of ecological constraints and metabolic costs. Finally, we demonstrated that the majority of the life history traits in our shrew population has the potential to evolve because they maintained substantial amounts of additive genetic variance. Nonetheless, life history traits had no significant heritability due to their high level of nonadditive or environmental variance. Résumé Les traits d'histoire de vie comprennent toutes les décisions auxquelles un individu est confronté au cours de sa vie et qui concernent sa valeur adaptative. L'étude de ces traits est cruciale pour comprendre les facteurs qui façonnent la biologie des êtres vivants. Jusqu'à ce jour, la majorité des informations sur l'évolution des traits d'histoire de vie provient d'études réalisées en laboratoire. Alors que ces études sont intéressantes pour tester l'effet de paramètres spécifiques, leurs conclusions sont difficilement extrapolables aux populations naturelles. Il est particulièrement intéressant d'étudier l'évolution des traits d'histoire de vie dans des populations naturelles. Toutefois, ces études peuvent se révéler difficiles parce qu'elles requièrent des informations sur la reproduction, la survie et la morphologie des individus. Des méthodes de marquage-recapture permettent d'obtenir ces informations. Cependant, lorsque l'écologie de l'espèce rend les obervations directes impossibles, des méthodes indirectes doivent être utilisées pour obtenir le succès reproducteur des individus. Dans ce cas, les marqueurs moléculaires sont particulièrement utiles pour évaluer les relations génétiques entre individus et permettre la construction d'un pedigree. Cette thèse porte sur une population naturelle d'un petit mammifère insectivore, la musaraigne musette, Crocidura russula. Parce que cette espèce présente un mode de vie souterrain, les deux techniques complémentaires mentionnées ci-dessus ont été combinées pour acquérir les informations nécessaires. Les données ont été utilisées pour explorer divers aspects de biologie evolutive. Nous avons montré que la grande quantité de variance génétique trouvée chez cette espèce n'est pas maintenue par son système d'appariement. Celle-ci s'est en effet avérée être moins monogame que ce qui était admis jusqu'ici. Sa grande diversité génétique est plutôt entretenue par le flux de gènes provenant du voisinage. La dispersion a donc été un sujet phare dans cette thèse. Nous avons montré qu'elle n'est pas provoquée par un évitement de la consanguinité et nous n'avons pas trouvé de dépression de consanguité dans notre population. L'acquisition d'un territoire joue par contre un rôle important dans la dispersion. En outre, la dispersion possède une base génétique chez cette espèce. De plus, une fois qu'ils ont dispersé, les individus n'ont pas une valeur adaptative differente d'individus philopatriques. Le poids s'est avéré être un trait d'histoire de vie fortement influencé par la sélection sexuelle et de viabilité chez les deux sexes. Les gros individus ont accès à la reproduction parce qu'ils acquièrent et défendent un territoire plus facilement que les plus légers. Au contraire, les individus de taille intermédiaire sont favorisés par la sélection de viabilité, certainement à cause de contraintes écologiques et de coûts métaboliques. Finalement, nous avons montré que la majorité des traits d'histoire de vie dans notre population a le potentiel d'évoluer parce qu'elle maintient des quantités considérables de variance génétique additive. Néanmoins, l'héritabilité de ces traits d'histoire de vie n'est pas significative à cause de la grande quantité de variance non-additive ou environmentale associée à ces traits.
Resumo:
Capillaria hepatica causes two main lesions in the liver of rats: multifocal chronic inflammation, directly related to the presence of disintegrating parasites and their eggs, and a process of systematized septal fibrosis. The comparative behavior of these two lesions was investigated in rats experimentally infected with 600 embryonated eggs, following either corticosteroid treatment or specific antigenic stimulation, in an attempt to understand the relationship between these two lesions, and the pathogenesis of septal fibrosis. The two treatments differently modified the morphological aspects of the focal parasitic-related lesions, but did not interfere with the presentation of diffuse septal fibrosis, although a mild decrease in the degree of fibrosis occurred in corticoid-treated animals. These findings indicate that although the two lesions are C. hepatica induced, they are under different pathogenetic control, the induction of septal fibrosis being triggered during early infection to follow an independent pathway.
Resumo:
We investigated the role of the number of loci coding for a neutral trait on the release of additive variance for this trait after population bottlenecks. Different bottleneck sizes and durations were tested for various matrices of genotypic values, with initial conditions covering the allele frequency space. We used three different types of matrices. First, we extended Cheverud and Routman's model by defining matrices of "pure" epistasis for three and four independent loci; second, we used genotypic values drawn randomly from uniform, normal, and exponential distributions; and third we used two models of simple metabolic pathways leading to physiological epistasis. For all these matrices of genotypic values except the dominant metabolic pathway, we find that, as the number of loci increases from two to three and four, an increase in the release of additive variance is occurring. The amount of additive variance released for a given set of genotypic values is a function of the inbreeding coefficient, independently of the size and duration of the bottleneck. The level of inbreeding necessary to achieve maximum release in additive variance increases with the number of loci. We find that additive-by-additive epistasis is the type of epistasis most easily converted into additive variance. For a wide range of models, our results show that epistasis, rather than dominance, plays a significant role in the increase of additive variance following bottlenecks.
Resumo:
New major and trace element analyses, Sr-Nd isotopic data and K-40-Ar-40 ages on Neogene and Quaternary lavas from Morocco lead to the conclusion that the observed temporal changes from calc-alkaline to transitional and finally alkaline magmatic activity reflect the contributions of distinct sources. According to our model, magmas originally derived from the melting of an European/Western Mediterranean-type asthenospheric mantle source interact during their ascent with either a subcontinental Ronda - Beni Bousera-/type lithospheric mantle (alkaline magmas) or a lithospheric mantle containing a crustal component, and the overlying continental crust (calc-alkaline and, to a lesser extent, transitional magmas). ( (C) Academie des sciences/Elsevier, Paris.).
Resumo:
Previous studies reported on the association of left ventricular mass index (LVMI) with urinary sodium or with circulating or urinary aldosterone. We investigated the independent associations of LVMI with the urinary excretion of both sodium and aldosterone. We randomly recruited 317 untreated subjects from a white population (45.1% women; mean age 48.2 years). Measurements included echocardiographic left ventricular (LV) properties, the 24-hour urinary excretion of sodium and aldosterone, plasma renin activity (PRA), and proximal (RNa(prox)) and distal (RNa(dist)) renal sodium reabsorption, assessed from the endogenous lithium clearance. In multivariable-adjusted models, we expressed changes in LVMI per 1-SD increase in the explanatory variables, while accounting for sex, age, systolic blood pressure, and the waist-to-hip ratio. LVMI increased independently with the urinary excretion of both sodium (+2.48 g/m(2); P=0.005) and aldosterone (+2.63 g/m(2); P=0.004). Higher sodium excretion was associated with increased mean wall thickness (MWT: +0.126 mm, P=0.054), but with no change in LV end-diastolic diameter (LVID: +0.12 mm, P=0.64). In contrast, higher aldosterone excretion was associated with higher LVID (+0.54 mm; P=0.017), but with no change in MWT (+0.070 mm; P=0.28). Higher RNa(dist) was associated with lower relative wall thickness (-0.81x10(-2), P=0.017), because of opposite trends in LVID (+0.33 mm; P=0.13) and MWT (-0.130 mm; P=0.040). LVMI was not associated with PRA or RNa(prox.) In conclusion, LVMI independently increased with both urinary sodium and aldosterone excretion. Increased MWT explained the association of LVMI with urinary sodium and increased LVID the association of LVMI with urinary aldosterone.
Resumo:
The weak selection approximation of population genetics has made possible the analysis of social evolution under a considerable variety of biological scenarios. Despite its extensive usage, the accuracy of weak selection in predicting the emergence of altruism under limited dispersal when selection intensity increases remains unclear. Here, we derive the condition for the spread of an altruistic mutant in the infinite island model of dispersal under a Moran reproductive process and arbitrary strength of selection. The simplicity of the model allows us to compare weak and strong selection regimes analytically. Our results demonstrate that the weak selection approximation is robust to moderate increases in selection intensity and therefore provides a good approximation to understand the invasion of altruism in spatially structured population. In particular, we find that the weak selection approximation is excellent even if selection is very strong, when either migration is much stronger than selection or when patches are large. Importantly, we emphasize that the weak selection approximation provides the ideal condition for the invasion of altruism, and increasing selection intensity will impede the emergence of altruism. We discuss that this should also hold for more complicated life cycles and for culturally transmitted altruism. Using the weak selection approximation is therefore unlikely to miss out on any demographic scenario that lead to the evolution of altruism under limited dispersal.
Resumo:
Inbreeding depression is one of the main forces opposing the evolution of self-fertilization. Of central importance is the hypothesis that inbreeding depression and selfing coevolve antagonistically, generating either low selfing rate and high inbreeding depression or vice versa. However, there is limited evidence for this coevolution within species. We investigated this topic in the hermaphroditic snail Physa acuta. In this species, isolated individuals delay the onset of egg laying compared to individuals having access to mates. Longer delays (''waiting times'') indicate more intense selfing avoidance. We measured inbreeding depression and waiting time in a large quantitative-genetic experiment (281 outbred families derived from 26 natural populations). We observed large genetic variance for both traits and a strong positive genetic covariance between them, most of which resided within rather than among populations. It means that, within populations, individuals with higher mutation load avoided selfing more strongly on average. This genetic covariance may result from pleiotropy and/or linkage disequilibrium. Whatever its genetic architecture, the fact it emerges specifically when individuals are deprived of mates suggests it is not fortuitous and rather reflects the action of natural selection. We conclude that a diversity of mating strategies can arise within populations subjected to variation in inbreeding depression.
Resumo:
The infection by the hepatitis B virus (HBV) has different forms of evolution, ranging from self-limited infection to chronic hepatic disease. The objective of this study was to evaluate the influence of cytokine genetic polymorphisms in the disease evolution. The patients were divided into two groups, one with chronic HBV (n = 30), and the other with self-limited infection (n = 41). The genotyping for TNF (-308), TGFB1 (+869, +915), IL-10 (1082, -819, and -592), IL-6 (-174), and IFNG (+874) was accomplished by the PCR-SSP (polymerase chain reaction with sequence specific primers technique using the One Lambda kit. Although no statistically significant differences were found between the groups, the combination of TNF -308GG and IFNG +874TA was found in a lower frequency in chronic patients than in individuals with self-limited infection (26.7 versus 46.3%; P = 0.079; OR = 0.40; IC95% = 0.14-1.11). In chronic patients with histological alterations it was not observed the genotype TGFB1+869 C/C, against 24.4% in the self limited infection group (100 versus 75.6%; P = 0.096; OR = 7.67; IC95% = 0.42-141.63). Further studies in other populations, and evaluation of a greater number of individuals could contribute for a better understanding of the cytokine genetic polymorphism influence in HBV infection evolution.
Resumo:
CD1d-dependent invariant Valpha14 (Valpha14i) NKT cells are innate T lymphocytes expressing a conserved semi-invariant TCR, consisting, in mice, of the invariant Valpha14-Jalpha18 TCR alpha-chain paired mostly with Vbeta8.2 and Vbeta7. The cellular requirements for thymic positive and negative selection of Valpha14i NKT cells are only partially understood. Therefore, we generated transgenic mice expressing human CD1d (hCD1d) either on thymocytes, mainly CD4+ CD8+ double positive, or on APCs, the cells implicated in the selection of Valpha14i NKT cells. In the absence of the endogenous mouse CD1d (mCD1d), the expression of hCD1d on thymocytes, but not on APCs, was sufficient to select Valpha14i NKT cells that proved functional when activated ex vivo with the Ag alpha-galactosyl ceramide. Valpha14i NKT cells selected by hCD1d on thymocytes, however, attained lower numbers than in control mice and expressed essentially Vbeta8.2. The low number of Vbeta8.2+ Valpha14i NKT cells selected by hCD1d on thymocytes was not reversed by the concomitant expression of mCD1d, which, instead, restored the development of Vbeta7+ Valpha14i NKT cells. Vbeta8.2+, but not Vbeta7+, NKT cell development was impaired in mice expressing both hCD1d on APCs and mCD1d. Taken together, our data reveal that selective CD1d expression by thymocytes is sufficient for positive selection of functional Valpha14i NKT cells and that both thymocytes and APCs may independently mediate negative selection.
Resumo:
Attempts over the past 50 years to explain variation in the abundance, distribution and diversity of plant secondary compounds gave rise to theories of plant defense. Remarkably, few phylogenetically robust tests of these long-standing theories have been conducted. Using >50 species of milkweed (Asclepias spp.), we show that variation among plant species in the induction of toxic cardenolides is explained by latitude, with higher inducibility evolving more frequently at lower latitudes. We also found that: (1) the production of cardenolides showed positive-correlated evolution with the diversity of cardenolides, (2) greater cardenolide investment by a species is accompanied by an increase in an estimate of toxicity (measured as chemical polarity) and (3) instead of trading off, constitutive and induced cardenolides were positively correlated. Analyses of root and shoot cardenolides showed concordant patterns. Thus, milkweed species from lower latitudes are better defended with higher inducibility, greater diversity and added toxicity of cardenolides.
Resumo:
High precision U-Pb zircon and Ar-40/Ar-39 mica geochronological data on metagranodiorites, metagranites and mica schists from north and central Evia island (Greece) are presented in this study. U-Pb zircon ages range from 308 to 1912 Ma, and indicate a prolonged magmatic activity in Late Carboniferous. Proterozoic ages represent inherited cores within younger crystals. Muscovite Ar-40/Ar-39 plateau ages of 288 to 297 Ma are interpreted as cooling ages of the magmatic bodies and metamorphic host rocks in upper greenschist to epidote-amphibolite metamorphic conditions. The multistage magmatism had a duration between 308 and 319 hla but some older intrusions, as well as metamorphic events, cannot be excluded. Geochemical analyses and zircon typology indicate calc-alkaline affinities for the granites of central Evia and alkaline to calc-alkaline characteristics for the metagranodiorites from the northern part of the island. The new data point towards the SE continuation, in Evia and the Cyclades, of a Variscan continental crust already recognised in northern Greece (Pelagonian basement). The Late Carboniferous magmatism is viewed as a result of northward subduction of the Paleotethys under the Eurasian margin.
Resumo:
An ecological-evolutionary classification of Amazonian triatomines is proposed based on a revision of their main contemporary biogeographical patterns. Truly Amazonian triatomines include the Rhodniini, the Cavernicolini, and perhaps Eratyrus and some Bolboderini. The tribe Rhodniini comprises two major lineages (pictipes and robustus). The former gave rise to trans-Andean (pallescens) and Amazonian (pictipes) species groups, while the latter diversified within Amazonia (robustus group) and radiated to neighbouring ecoregions (Orinoco, Cerrado-Caatinga-Chaco, and Atlantic Forest). Three widely distributed Panstrongylus species probably occupied Amazonia secondarily, while a few Triatoma species include Amazonian populations that occur only in the fringes of the region. T. maculata probably represents a vicariant subset isolated from its parental lineage in the Caatinga-Cerrado system when moist forests closed a dry trans-Amazonian corridor. These diverse Amazonian triatomines display different degrees of synanthropism, defining a behavioural gradient from household invasion by adult triatomines to the stable colonisation of artificial structures. Anthropogenic ecological disturbance (driven by deforestation) is probably crucial in the onset of the process, but the fact that only a small fraction of species effectively colonises artificial environments suggests a role for evolution at the end of the gradient. Domestic infestation foci are restricted to drier subregions within Amazonia; thus, populations adapted to extremely humid rainforest microclimates may have limited chances of successfully colonising the slightly drier artificial microenvironments. These observations suggest several research avenues, from the use of climate data to map risk areas to the assessment of the synanthropic potential of individual vector species.
Resumo:
Phosphate homeostasis was studied in a monocotyledonous model plant through the characterization of the PHO1 gene family in rice (Oryza sativa). Bioinformatics and phylogenetic analysis showed that the rice genome has three PHO1 homologs, which cluster with the Arabidopsis (Arabidopsis thaliana) AtPHO1 and AtPHO1;H1, the only two genes known to be involved in root-to-shoot transfer of phosphate. In contrast to the Arabidopsis PHO1 gene family, all three rice PHO1 genes have a cis-natural antisense transcript located at the 5 ' end of the genes. Strand-specific quantitative reverse transcription-PCR analyses revealed distinct patterns of expression for sense and antisense transcripts for all three genes, both at the level of tissue expression and in response to nutrient stress. The most abundantly expressed gene was OsPHO1;2 in the roots, for both sense and antisense transcripts. However, while the OsPHO1;2 sense transcript was relatively stable under various nutrient deficiencies, the antisense transcript was highly induced by inorganic phosphate (Pi) deficiency. Characterization of Ospho1;1 and Ospho1;2 insertion mutants revealed that only Ospho1;2 mutants had defects in Pi homeostasis, namely strong reduction in Pi transfer from root to shoot, which was accompanied by low-shoot and high-root Pi. Our data identify OsPHO1;2 as playing a key role in the transfer of Pi from roots to shoots in rice, and indicate that this gene could be regulated by its cis-natural antisense transcripts. Furthermore, phylogenetic analysis of PHO1 homologs in monocotyledons and dicotyledons revealed the emergence of a distinct clade of PHO1 genes in dicotyledons, which include members having roles other than long-distance Pi transport.