835 resultados para incoherent optical transmission


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We extend the theory of parametric noise amplification to the case of transmission systems employing multiple optical phase conjugators, demonstrating that the excess noise due to this process may be reduced in direct proportion to the number of phase conjugation devices employed. We further identify that the optimum noise suppression is achieved for an odd number of phase conjugators, and that the noise may be further suppressed by up to 3dB by partial digital back propagation (or fractional spans at the ends of the links).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transmission of a net 467-Gb/s PDM-16QAM Nyquist-spaced superchannel is reported with an intra-superchannel net spectral efficiency (SE) of 6.6 (b/s)/Hz, over 364-km SMF-28 ULL ultra-low loss optical fiber, enabled by bi-directional second-order Raman amplification and digital nonlinearity compensation. Multi-channel digital back-propagation (MC-DBP) was applied to compensate for nonlinear interference; an improvement of 2 dB in Q2 factor was achieved when 70-GHz DBP bandwidth was applied, allowing an increase in span length of 37 km.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advanced signal processing, such as multi-channel digital back propagation and mid span optical phase conjugation, can compensate for inter channel nonlinear effects in point to point links. However, once such are effects are compensated, the interaction between the signal and noise fields becomes dominant. We will show that this interaction has a direct impact on the signal to noise ratio improvement, observing that ideal optical phase conjugation offers 1.5 dB more performance benefit than DSP based compensation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we discuss recent advances in digital signal processing techniques for compensation of the laser phase noise and fiber nonlinearity impairments in coherent optical orthogonal frequency division multiplexing (CO-OFDM) transmission. For laser phase noise compensation, we focus on quasi-pilot-aided (QPA) and decision-directed-free blind (DDF-blind) phase noise compensation techniques. For fiber nonlinearity compensation, we discuss in details the principle and performance of the phase-conjugated pilots (PCP) scheme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We summarize our research work on the design and development of an add-drop multiplexer for spectrally overlapping OFDM signals. The standard node functions of sub-channel drop, extraction and insertion were obtained whilst the signals remained fully in the optical domain. Numerical simulations have been carried out to identify the main sources of degradation and to benchmark the architectural performance against critical design parameters, whereas the experimental demonstration of the scheme has been achieved for both single quadrature and dual quadrature signals. The reported scheme enables a fully flexible node compatible with future terabit per second super-channel transmission.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the design of nonlinear regenerative communication channels that have capacity above the classical Shannon capacity of the linear additive white Gaussian noise channel. The upper bound for regeneration efficiency is found and the asymptotic behavior of the capacity in the saturation regime is derived. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate an accurate BER estimation method for QPSK CO-OFDM transmission based on the probability density function of the received QPSK symbols. Using a 112Gbs QPSK CO-OFDM transmission as an example, we show that this method offers the most accurate estimate of the system's performance in comparison with other known approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a novel random DFB fiber laser based Raman amplification using bidirectional second-order pumping. This extends the reach of 116 Gb/s DP-QPSK WDM transmission up to 7915 km, compared with other Raman amplification techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel approach to pulse shaping using a phase-modulated fiber Bragg grating (FBG) in transmission is proposed and designed. We show that phase-modulated FBGs can provide transmission responses suitable for pulse shaping applications, offering important technological feasibility benefits, since the coupling strength remains basically uniform in the grating. Moreover, this approach retains the substantial advantages of FBGs in transmission, such as optimum energy efficiency, no requirement for an optical circulator, and robustness against fabrication errors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One major drawback of coherent optical orthogonal frequency-division multiplexing (CO-OFDM) that hitherto remains unsolved is its vulnerability to nonlinear fiber effects due to its high peak-to-average power ratio. Several digital signal processing techniques have been investigated for the compensation of fiber nonlinearities, e.g., digital back-propagation, nonlinear pre- and post-compensation and nonlinear equalizers (NLEs) based on the inverse Volterra-series transfer function (IVSTF). Alternatively, nonlinearities can be mitigated using nonlinear decision classifiers such as artificial neural networks (ANNs) based on a multilayer perceptron. In this paper, ANN-NLE is presented for a 16QAM CO-OFDM system. The capability of the proposed approach to compensate the fiber nonlinearities is numerically demonstrated for up to 100-Gb/s and over 1000km and compared to the benchmark IVSTF-NLE. Results show that in terms of Q-factor, for 100-Gb/s at 1000km of transmission, ANN-NLE outperforms linear equalization and IVSTF-NLE by 3.2dB and 1dB, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long reach-passive optical networks (LR-PON) are being proposed as a means of enabling ubiquitous fiber-to-the-home (FTTH) by massive sharing of network resources and therefore reducing per customer costs to affordable levels. In this paper, we analyze the chain solutions for LR-PON deployment in urban and rural areas at 100-Gb/s point-to-point transmission using dual polarization-quaternary phase shift-keying (DP-QPSK) modulation. The numerical analysis shows that with appropriate finite impulse response (FIR) filter designs, 100-Gb/s transmission can be achieved with at least 512 way split and up to 160 km total distance, which is sufficient for many of the optical paths in a practical situation, for point-to-point link from one LR-PON to another LR-PON through the optical switch at the metro nodes and across a core light path through the core network without regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review is concerned with nanoscale effects in highly transparent dielectric photonic structures fabricated from optical fibers. In contrast to those in plasmonics, these structures do not contain metal particles, wires, or films with nanoscale dimensions. Nevertheless, a nanoscale perturbation of the fiber radius can significantly alter their performance. This paper consists of three parts. The first part considers propagation of light in thin optical fibers (microfibers) having the radius of the order of 100 nanometers to 1 micron. The fundamental mode propagating along a microfiber has an evanescent field which may be strongly expanded into the external area. Then, the cross-sectional dimensions of the mode and transmission losses are very sensitive to small variations of the microfiber radius. Under certain conditions, a change of just a few nanometers in the microfiber radius can significantly affect its transmission characteristics and, in particular, lead to the transition from the waveguiding to non-waveguiding regime. The second part of the review considers slow propagation of whispering gallery modes in fibers having the radius of the order of 10–100 microns. The propagation of these modes along the fiber axis is so slow that they can be governed by extremely small nanoscale changes of the optical fiber radius. This phenomenon is exploited in SNAP (surface nanoscale axial photonics), a new platform for fabrication of miniature super-low-loss photonic integrated circuits with unprecedented sub-angstrom precision. The SNAP theory and applications are overviewed. The third part of this review describes methods of characterization of the radius variation of microfibers and regular optical fibers with sub-nanometer precision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fine control of the mPOF Bragg grating spectrum properties, such as maximum reflected power and 3dB bandwidth, through acousto-optic modulation (AOM) using flexural regime is presented. A numerical comparison of the strain field along mPOFBG - AOM and the similar structure with SMFBG-AOM was presented, showing that the strain field amplitude is higher along the mPOFBG due to its smaller mechanical stiffness. The obtained results can be used in the development of fine-tuned optical filters using low voltage sources and low frequency regimes, to obtain tunable optical filters and to control the shape of the spectrum. Studies of the behavior in different gratings (such as phase shifted and long period gratings) for photonic applications, such as tunable notch filters or tunable cavities, are in progress. It can potentially be applied on tunable optical filters for POF transmission. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unrepeatered transmission over SMF-28 fibre is investigated using ultra-long Raman fibre laser based amplification. Experiments and simulations demonstrate 8 x 42.7Gb/s transmission up to 320km (67dB) span length using DPSK and ASK modulation with direct detection. © 2012 OSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a comparative analysis on three carrier phase extraction approaches, including a one-tap normalized least mean square method, a block-average method, and a Viterbi-Viterbi method, in coherent transmission system considering equalization enhanced phase noise. © OSA 2012.