941 resultados para image noise modeling
Resumo:
The method of generalized estimating equations (GEE) is a popular tool for analysing longitudinal (panel) data. Often, the covariates collected are time-dependent in nature, for example, age, relapse status, monthly income. When using GEE to analyse longitudinal data with time-dependent covariates, crucial assumptions about the covariates are necessary for valid inferences to be drawn. When those assumptions do not hold or cannot be verified, Pepe and Anderson (1994, Communications in Statistics, Simulations and Computation 23, 939–951) advocated using an independence working correlation assumption in the GEE model as a robust approach. However, using GEE with the independence correlation assumption may lead to significant efficiency loss (Fitzmaurice, 1995, Biometrics 51, 309–317). In this article, we propose a method that extracts additional information from the estimating equations that are excluded by the independence assumption. The method always includes the estimating equations under the independence assumption and the contribution from the remaining estimating equations is weighted according to the likelihood of each equation being a consistent estimating equation and the information it carries. We apply the method to a longitudinal study of the health of a group of Filipino children.
Resumo:
Previous studies have shown that users’ cognitive styles play an important role during Web searching. However, only limited studies have showed the relationship between cognitive styles and Web search behavior. Most importantly, it is not clear which components of Web search behavior are influenced by cognitive styles. This paper examines the relationships between users’ cognitive styles and their Web searching and develops a model that portrays the relationship. The study uses qualitative and quantitative analyses to inform the study results based on data gathered from 50 participants. A questionnaire was utilised to collect participants’ demographic information, and Riding’s (1991) Cognitive Style Analysis (CSA) test to assess their cognitive styles. Results show that users’ cognitive styles influenced their information searching strategies, query reformulation behaviour, Web navigational styles and information processing approaches. The user model developed in this study depicts the fundamental relationships between users’ Web search behavior and their cognitive styles. Modeling Web search behavior with a greater understanding of user’s cognitive styles can help information science researchers and information systems designers to bridge the semantic gap between the user and the systems. Implications of the research for theory and practice, and future work are discussed.
Resumo:
There are several methods for determining the proteoglycan content of cartilage in biomechanics experiments. Many of these include assay-based methods and the histochemistry or spectrophotometry protocol where quantification is biochemically determined. More recently a method based on extracting data to quantify proteoglycan content has emerged using the image processing algorithms, e.g., in ImageJ, to process histological micrographs, with advantages including time saving and low cost. However, it is unknown whether or not this image analysis method produces results that are comparable to those obtained from the biochemical methodology. This paper compares the results of a well-established chemical method to those obtained using image analysis to determine the proteoglycan content of visually normal (n=33) and their progressively degraded counterparts with the protocols. The results reveal a strong linear relationship with a regression coefficient (R2) = 0.9928, leading to the conclusion that the image analysis methodology is a viable alternative to the spectrophotometry.
Resumo:
Carbonatites are known to contain the highest concentrations of rare-earth elements (REE) among all igneous rocks. The REE distribution of carbonatites is commonly believed to be controlled by that of the rock forming Ca minerals (i.e., calcite, dolomite, and ankerite) and apatite because of their high modal content and tolerance for the substitution of Ca by light REE (LREE). Contrary to this conjecture, calcite from the Miaoya carbonatite (China), analyzed in situ by laser-ablation inductively-coupled-plasma mass-spectrometry, is characterized by low REE contents (100–260 ppm) and relatively !at chondrite-normalized REE distribution patterns [average (La/Yb)CN=1.6]. The carbonatite contains abundant REE-rich minerals, including monazite and !uorapatite, both precipitated earlier than the REE-poor calcite, and REE-fluorocarbonates that postdated the calcite. Hydrothermal REE-bearing !uorite and barite veins are not observed at Miaoya. The textural and analytical evidence indicates that the initially high concentrations of REE and P in the carbonatitic magma facilitated early precipitation of REE-rich phosphates. Subsequent crystallization of REE-poor calcite led to enrichment of the residual liquid in REE, particularly LREE. This implies that REE are generally incompatible with respect to calcite and the calcite/melt partition coefficients for heavy REE (HREE) are significantly greater than those for LREE. Precipitation of REE-fluorocarbonates late in the evolutionary history resulted in depletion of the residual liquid in LREE, as manifested by the development of HREE-enriched late-stage calcite [(La/Yb)CN=0.7] in syenites associated with the carbonatite. The observed variations of REE distribution between calcite and whole rocks are interpreted to arise from multistage fractional crystallization (phosphates!calcite!REE-!uorocarbonates) from an initially REE-rich carbonatitic liquid.
Resumo:
This thesis introduces improved techniques towards automatically estimating the pose of humans from video. It examines a complete workflow to estimating pose, from the segmentation of the raw video stream to extract silhouettes, to using the silhouettes in order to determine the relative orientation of parts of the human body. The proposed segmentation algorithms have improved performance and reduced complexity, while the pose estimation shows superior accuracy during difficult cases of self occlusion.
Resumo:
Background The application of theoretical frameworks for modeling predictors of drug risk among male street laborers remains limited. The objective of this study was to test a modified version of the IMB (Information-Motivation-Behavioral Skills Model), which includes psychosocial stress, and compare this modified version with the original IMB model in terms of goodness-of-fit to predict risky drug use behavior among this population. Methods In a cross-sectional study, social mapping technique was conducted to recruit 450 male street laborers from 135 street venues across 13 districts of Hanoi city, Vietnam, for face-to-face interviews. Structural equation modeling (SEM) was used to analyze data from interviews. Results Overall measures of fit via SEM indicated that the original IMB model provided a better fit to the data than the modified version. Although the former model was able to predict a lesser variance than the latter (55% vs. 62%), it was of better fit. The findings suggest that men who are better informed and motivated for HIV prevention are more likely to report higher behavioral skills, which, in turn, are less likely to be engaged in risky drug use behavior. Conclusions This was the first application of the modified IMB model for drug use in men who were unskilled, unregistered laborers in urban settings. An AIDS prevention program for these men should not only distribute information and enhance motivations for HIV prevention, but consider interventions that could improve self-efficacy for preventing HIV infection. Future public health research and action may also consider broader factors such as structural social capital and social policy to alter the conditions that drive risky drug use among these men.
Resumo:
In outdoor environments shadows are common. These typically strong visual features cause considerable change in the appearance of a place, and therefore confound vision-based localisation approaches. In this paper we describe how to convert a colour image of the scene to a greyscale invariant image where pixel values are a function of underlying material property not lighting. We summarise the theory of shadow invariant images and discuss the modelling and calibration issues which are important for non-ideal off-the-shelf colour cameras. We evaluate the technique with a commonly used robotic camera and an autonomous car operating in an outdoor environment, and show that it can outperform the use of ordinary greyscale images for the task of visual localisation.
Resumo:
This paper presents mathematical models for BRT station operation, calibrated using microscopic simulation modelling. Models are presented for station capacity and bus queue length. No reliable model presently exists to estimate bus queue length. The proposed bus queue model is analogous to an unsignalized intersection queuing model.
Resumo:
The selection of optimal camera configurations (camera locations, orientations, etc.) for multi-camera networks remains an unsolved problem. Previous approaches largely focus on proposing various objective functions to achieve different tasks. Most of them, however, do not generalize well to large scale networks. To tackle this, we propose a statistical framework of the problem as well as propose a trans-dimensional simulated annealing algorithm to effectively deal with it. We compare our approach with a state-of-the-art method based on binary integer programming (BIP) and show that our approach offers similar performance on small scale problems. However, we also demonstrate the capability of our approach in dealing with large scale problems and show that our approach produces better results than two alternative heuristics designed to deal with the scalability issue of BIP. Last, we show the versatility of our approach using a number of specific scenarios.
Resumo:
Stations on Bus Rapid Transit (BRT) lines ordinarily control line capacity because they act as bottlenecks. At stations with passing lanes, congestion may occur when buses maneuvering into and out of the platform stopping lane interfere with bus flow, or when a queue of buses forms upstream of the station blocking inflow. We contend that, as bus inflow to the station area approaches capacity, queuing will become excessive in a manner similar to operation of a minor movement on an unsignalized intersection. This analogy is used to treat BRT station operation and to analyze the relationship between station queuing and capacity. In the first of three stages, we conducted microscopic simulation modeling to study and analyze operating characteristics of the station under near steady state conditions through output variables of capacity, degree of saturation and queuing. A mathematical model was then developed to estimate the relationship between average queue and degree of saturation and calibrated for a specified range of controlled scenarios of mean and coefficient of variation of dwell time. Finally, simulation results were calibrated and validated.
Resumo:
Public transport travel time variability (PTTV) is essential for understanding deteriorations in the reliability of travel time, optimizing transit schedules and route choices. This paper establishes key definitions of PTTV in which firstly include all buses, and secondly include only a single service from a bus route. The paper then analyses the day-to-day distribution of public transport travel time by using Transit Signal Priority data. A comprehensive approach using both parametric bootstrapping Kolmogorov-Smirnov test and Bayesian Information Creation technique is developed, recommends Lognormal distribution as the best descriptor of bus travel time on urban corridors. The probability density function of Lognormal distribution is finally used for calculating probability indicators of PTTV. The findings of this study are useful for both traffic managers and statisticians for planning and researching the transit systems.
Resumo:
Whole-image descriptors such as GIST have been used successfully for persistent place recognition when combined with temporal filtering or sequential filtering techniques. However, whole-image descriptor localization systems often apply a heuristic rather than a probabilistic approach to place recognition, requiring substantial environmental-specific tuning prior to deployment. In this paper we present a novel online solution that uses statistical approaches to calculate place recognition likelihoods for whole-image descriptors, without requiring either environmental tuning or pre-training. Using a real world benchmark dataset, we show that this method creates distributions appropriate to a specific environment in an online manner. Our method performs comparably to FAB-MAP in raw place recognition performance, and integrates into a state of the art probabilistic mapping system to provide superior performance to whole-image methods that are not based on true probability distributions. The method provides a principled means for combining the powerful change-invariant properties of whole-image descriptors with probabilistic back-end mapping systems without the need for prior training or system tuning.
Resumo:
In many active noise control (ANC) applications, an online secondary path modelling method that uses a white noise as a training signal is required. This paper proposes a new feedback ANC system. Here we modified both the FxLMS and the VSS-LMS algorithms to raised noise attenuation and modelling accuracy for the overall system. The proposed algorithm stops injection of the white noise at the optimum point and reactivate the injection during the operation, if needed, to maintain performance of the system. Preventing continuous injection of the white noise increases the performance of the proposed method significantly and makes it more desirable for practical ANC systems. Computer simulation results shown in this paper indicate effectiveness of the proposed method.
Resumo:
Development of design guides to estimate the difference in speech interference level due to road traffic noise between a reference position and balcony position or façade position is explored. A previously established and validated theoretical model incorporating direct, specular and diffuse reflection paths is used to create a database of results across a large number of scenarios. Nine balcony types with variable acoustic treatments are assessed to provide acoustic design guidance on optimised selection of balcony acoustic treatments based on location and street type. In total, the results database contains 9720 scenarios on which multivariate linear regression is conducted in order to derive an appropriate design guide equation. The best fit regression derived is a multivariable linear equation including modified exponential equations on each of nine deciding variables, (1) diffraction path difference, (2) ratio of total specular energy to direct energy, (3) distance loss between reference position and receiver position, (4) distance from source to balcony façade, (5) height of balcony floor above street, (6) balcony depth, (7) height of opposite buildings, (8) diffusion coefficient of buildings, and; (9) balcony average absorption. Overall, the regression correlation coefficient, R2, is 0.89 with 95% confidence standard error of ±3.4 dB.
Resumo:
A security system based on the recognition of the iris of human eyes using the wavelet transform is presented. The zero-crossings of the wavelet transform are used to extract the unique features obtained from the grey-level profiles of the iris. The recognition process is performed in two stages. The first stage consists of building a one-dimensional representation of the grey-level profiles of the iris, followed by obtaining the wavelet transform zerocrossings of the resulting representation. The second stage is the matching procedure for iris recognition. The proposed approach uses only a few selected intermediate resolution levels for matching, thus making it computationally efficient as well as less sensitive to noise and quantisation errors. A normalisation process is implemented to compensate for size variations due to the possible changes in the camera-to-face distance. The technique has been tested on real images in both noise-free and noisy conditions. The technique is being investigated for real-time implementation, as a stand-alone system, for access control to high-security areas.