926 resultados para helminth antibody
Resumo:
The window of opportunity is a concept critical to rheumatoid arthritis treatment. Early treatment changes the outcome of rheumatoid arthritis treatment, in that response rates are higher with earlier disease-modifying anti-rheumatic drug treatment and damage is substantially reduced. Axial spondyloarthritis is an inflammatory axial disease encompassing both nonradiographic axial spondyloarthritis and established ankylosing spondylitis. In axial spondyloarthritis, studies of magnetic resonance imaging as well as tumor necrosis factor inhibitor treatment and withdrawal studies all suggest that early effective suppression of inflammation has the potential to reduce radiographic damage. This potential would suggest that the concept of a window of opportunity is relevant not only to rheumatoid arthritis but also to axial spondyloarthritis. The challenge now remains to identify high-risk patients early and to commence treatment without delay. Developments in risk stratification include new classification criteria, identification of clinical risk factors, biomarkers, genetic associations, potential antibody associations and an ankylosing spondylitis-specific microbiome signature. Further research needs to focus on the evidence for early intervention and the early identification of high-risk individuals.
Resumo:
There is strong evidence from twin and family studies indicating that a substantial proportion of the heritability of susceptibility to ankylosing spondylitis (AS) and its clinical manifestations is encoded by non-major-histocompatibility-complex genes. Efforts to identify these genes have included genomewide linkage studies and candidate gene association studies. One region, the interleukin (IL)-1 gene complex on chromosome 2, has been repeatedly associated with AS in both Caucasians and Asians. It is likely that more than one gene in this complex is involved in AS, with the strongest evidence to date implicating IL-1A. Identifying the genes underlying other linkage regions has been difficult due to the lack of obvious candidates and the low power of most studies to date to identify genes of the small to moderate magnitude that are likely to be involved. The field is moving towards genomewide association analysis, involving much larger datasets of unrelated cases and controls. Early successes using this approach in other diseases indicates that it is likely to identify genes in common diseases like AS, but there remains the risk that the common-variant, common-disease hypothesis will not hold true in AS. Nonetheless, it is appropriate for the field to be cautiously optimistic that the next few years will bring great advances in our understanding of the genetics of this condition.
Resumo:
Background and objective Individuals with chronic obstructive pulmonary disease (COPD) are at a high risk of developing significant complications from infection with the influenza virus. It is therefore vital to ensure that prophylaxis with the influenza vaccine is effective in COPD. The aim of this study was to assess the immunogenicity of the 2010 trivalent influenza vaccine in persons with COPD compared to healthy subjects without lung disease, and to examine clinical factors associated with the serological response to the vaccine. Methods In this observational study, 34 subjects (20 COPD, 14 healthy) received the 2010 influenza vaccine. Antibody titers at baseline and 28 days post-vaccination were measured using the hemagglutination inhibition assay (HAI) assay. Primary endpoints included seroconversion (≥4-fold increase in antibody titers from baseline) and the fold increase in antibody titer after vaccination. Results Persons with COPD mounted a significantly lower humoral immune response to the influenza vaccine compared to healthy participants. Seroconversion occurred in 90% of healthy participants, but only in 43% of COPD patients (P=0.036). Increasing age and previous influenza vaccination were associated with lower antibody responses. Antibody titers did not vary significantly with cigarette smoking, presence of other comorbid diseases, or COPD severity. Conclusion The humoral immune response to the 2010 influenza vaccine was lower in persons with COPD compared to non-COPD controls. The antibody response also declined with increasing age and in those with a history of prior vaccination.
Resumo:
Background: Given that viral infections are common triggers for exacerbations of Chronic Obstructive Pulmonary Disease (COPD), current clinical guidelines recommend that all patients receive annual influenza vaccinations. A detailed examination of the immune response to vaccination in COPD has not previously been undertaken, so this study aimed to compare immune responses to influenza vaccination between COPD patients and healthy subjects. Methods: Twenty one COPD patients and fourteen healthy subjects were recruited and cellular immune function was assessed pre- and post- vaccination with trivalent inactivated influenza vaccine. Results: One month after vaccination, H1N1 specific antibody titres were significantly lower in COPD patients than in healthy controls (p=0.02). Multivariate analysis demonstrated that post vaccination antibody titres were independently associated with COPD, but not with age or smoking status. Innate immune responses to the vaccine preparation did not differ between the two populations. Serum concentrations of IL-21, a cytokine that is important for B cell development and antibody synthesis, were also lower in COPD patients than in healthy subjects (p<0.01). In vitro functional differences were also observed, with fewer proliferating B cells expressing CD27 (p=0.04) and reduced T-cell IFN-γ synthesis (p<0.01) in COPD patients, relative to healthy subjects. Conclusions: In conclusion, COPD was associated with altered immune responses to influenza vaccination compared to healthy controls with reductions in both T-cell and B-cell function. These findings provide a foundation for future research aimed at optimising the effectiveness of influenza vaccination in COPD.
Resumo:
Background Group 1 grass pollen allergens are glycoproteins of the β-expansin family. They are a predominant component of pollen and are potent allergens with a high frequency of serum IgE reactivity in grass pollen-allergic patients. Bahia grass is distinct from temperate grasses and has a prolonged pollination period and wide distribution in warmer climates. Here we describe the purification of the group 1 pollen allergen, Pas n 1, from Bahia grass (Paspalum notatum), an important subtropical aeroallergen source. Methods Pas n 1 was purified from an aqueous Bahia grass pollen extract by ammonium sulphate precipitation, hydrophobic interaction and size exclusion chromatography, and assessed by one- and two-dimensional gel electrophoresis, immunoblotting and ELISA. Results Pas n 1 was purified to a single 29-kDa protein band containing two dominant isoforms detected by an allergen-specific monoclonal antibody and serum IgE of a Bahia grass pollen-allergic donor. The frequency of serum IgE reactivity with purified Pas n 1 in 51 Bahia grass pollen-allergic patients was 90.6%. Serum IgE reactivity with purified Pas n 1 was highly correlated with serum IgE reactivity with Bahia grass pollen extract and recombinant Pas n 1 (r = 0.821 and 0.913, respectively). Conclusions Pas n 1 is a major allergen reactive at high frequency with serum IgE of Bahia grass pollen-allergic patients. Purified natural Pas n 1 has utility for improved specific diagnosis and immunotherapy for Bahia grass pollen allergy.
Resumo:
Bahia grass, Paspalum notatum, is an important pollen allergen source with a long season of pollination and wide distribution in subtropical and temperate regions. We aimed to characterize the 55. kDa allergen of Bahia grass pollen (BaGP) and ascertain its clinical importance. BaGP extract was separated by 2D-PAGE and immunoblotted with serum IgE of a grass pollen-allergic patient. The amino-terminal protein sequence of the predominant allergen isoform at 55. kDa had similarity with the group 13 allergens of Timothy grass and maize pollen, Phl p 13 and Zea m 13. Four sequences obtained by rapid amplification of the allergen cDNA ends represented multiple isoforms of Pas n 13. The predicted full length cDNA for Pas n 13 encoded a 423 amino acid glycoprotein including a signal peptide of 28 residues and with a predicted pI of 7.0. Tandem mass spectrometry of tryptic peptides of 2D gel spots identified peptides specific to the deduced amino acid sequence for each of the four Pas n 13 cDNA, representing 47% of the predicted mature protein sequence of Pas n 13. There was 80.6% and 72.6% amino acid identity with Zea m 13 and Phl p 13, respectively. Reactivity with a Phl p 13-specific monoclonal antibody AF6 supported designation of this allergen as Pas n 13. The allergen was purified from BaGP extract by ammonium sulphate precipitation, hydrophobic interaction and size exclusion chromatography. Purified Pas n 13 reacted with serum IgE of 34 of 71 (48%) grass pollen-allergic patients and specifically inhibited IgE reactivity with the 55. kDa band of BaGP for two grass pollen-allergic donors. Four isoforms of Pas n 13 from pI 6.3-7.8 had IgE-reactivity with grass pollen allergic sera. The allergenic activity of purified Pas n 13 was demonstrated by activation of basophils from whole blood of three grass pollen-allergic donors tested but not control donors. Pas n 13 is thus a clinically relevant pollen allergen of the subtropical Bahia grass likely to be important in eliciting seasonal allergic rhinitis and asthma in grass pollen-allergic patients.
Resumo:
Background The subtropical Bahia grass (Paspalum notatum) is an important source of pollen allergens with an extended season of pollination and wide distribution in warmer climates. The immunological relationship between pollen allergens of Bahia grass and temperate grasses is unresolved. Methods Serum IgE reactivity of grass pollen-allergic patients with Bahia, Ryegrass and Bermuda grass pollen extracts and their purified group 1 allergens, Pas n 1, Lol p 1 and Cyn d 1, were compared by immunoblotting, ELISA, inhibition ELISA, basophil activation by flow cytometry and molecular modeling. Results Differences in antibody recognition of allergenic components between Bahia grass and Ryegrass pollen were observed by immunoblotting. Eight grass pollen-allergic patients from a temperate region showed greater serum IgE reactivity with Ryegrass pollen than Bahia grass by ELISA. For seven of these sera, Ryegrass pollen inhibited IgE reactivity with Bahia grass pollen but not the converse. For 51 sera from grass pollen-allergic patients in this temperate region, IgE reactivity with Lol p 1 was greater than Pas n 1 or Cyn d 1. IgE reactivity with Lol p 1 was not inhibited by Pas n 1 or Cyn d 1, but Pas n 1 IgE reactivity was inhibited by Lol p 1. Two group 1 grass pollen allergen-specific mAb distinguished between temperate and subtropical grass pollens. Basophil activation for three patients tested was greater by Ryegrass pollen than Bahia or Bermuda grass, and by Lol p 1 than Pas n 1 or Cyn d 1. In contrast, two patients from a subtropical region had higher serum IgE reactivity with Bahia grass pollen than Ryegrass and Bahia grass pollen inhibited IgE reactivity with Ryegrass. A structural model of Pas n 1 showed amino acids implicated in IgE epitopes of other group 1 allergens were juxtaposed on the surface. Conclusion Allergens from subtropical Bahia grass pollen, including Pas n 1, share antigenic determinants with temperate grass pollen allergens, but patients exhibit higher serum IgE reactivity to their locally predominant grass pollen. Basophil activation by Bahia grass pollen and Pas n 1 in patients from a temperate climate indicates clinically relevant cross-sensitization between temperate and subtropical grass pollens.
Resumo:
The clinical efficacy of anti-immunoglobulin E (IgE) therapy indicates a central role for IgE in perpetuation of allergic inflammatory diseases. Omalizumab is now uti- lized in treatment of a wide variety of allergic conditions including severe asthma, allergic rhinitis, atopic dermati- tis, food allergy and urticaria either alone or adjunct with other therapies such as steroid administration or allergen- specific immunotherapy [1, 2]. Current research activity is focused on the cellular and molecular mechanisms by which IgE influences the immunopathogenesis of allergic disease [3]. Increased knowledge of how IgE exerts its effects will underpin effective clinical use of anti-IgE treatment. In this issue Kerzel et al. [4] investigate the effects of altered antibo dy repertoire on the outcomes of an experimental model of allergic asthma.
Resumo:
Patients with allergic diseases produce an excess of allergen-specific IgE, the specific effector molecule that triggers allergic reactions. The provocation for this excess IgE production is still uncertain. Current ideas include oligoclonal expansion of allergen-specific B cells emanating from germinal centres, activation by superantigen of a subset of B cells, or polyclonal B cells class switching to IgE due to an IL-4 predominance. Additionally, genetic elements contribute to a propensity for increased allergen-specific IgE production. The procedure of RT-PCR allows for amplification of infrequent IgE mRNA transcripts from B cells of atopic individuals, and so facilitates examination of expressed Ig cDNA sequences. Better knowledge of the molecular characteristics of IgE produced by patients with allergic diseases would elucidate the immunogenetic basis for elevated allergen-specific IgE levels. The 'immunogenetic footprint' of IgE transcripts may elucidate the origin and activation of IgE-producing B cells in allergic disease. Here we review studies of the immunogenetic features of IgE in allergic diseases, highlighting the major advances and the experimental limitations.
Resumo:
Ross River (RR) virus is an alphavirus endemic to Australia and New Guinea and is the aetiological agent of epidemic polyarthritis or RR virus disease. Here we provide evidence that RR virus uses the collagen-binding α1β1 integrin as a cellular receptor. Infection could be inhibited by collagen IV and antibodies specific for the β1 and α1 integrin proteins, and fibroblasts from α1-integrin-/- mice were less efficiently infected than wild-type fibroblasts. Soluble α1β1 integrin bound immobilized RR virus, and peptides representing the α1β1 integrin binding-site on collagen IV inhibited virus binding to cells. We speculate that two highly conserved regions within the cell-receptor binding domain of E2 mimic collagen and provide access to cellular collagen-binding receptors.
Resumo:
Background: Perennial Ryegrass is a major cause of rhinitis in spring and early summer. Bahia grass, Paspalum notatum, flowers late into summer and could account for allergic rhinitis at this time. We determined the frequency of serum immunoglobulin (Ig)E reactivity with Bahia grass in Ryegrass pollen allergic patients and investigated IgE cross-reactivity between Bahia and Ryegrass. Methods: Serum from 33 Ryegrass pollen allergic patients and 12 nonatopic donors were tested for IgE reactivity with Bahia and Ryegrass pollen extracts (PE) by enzyme-linked immunosorbent assay (ELISA), western blotting and inhibition ELISA. Allergen-specific antibodies from a pool of sera from allergic donors were affinity purified and tested for IgE cross-reactivity. Results: Seventy-eight per cent of the sera had IgE reactivity with Bahia grass, but more weakly than with Ryegrass. Antibodies eluted from the major Ryegrass pollen allergens, Lol p 1 and Lol p 5, showed IgE reactivity with allergens of Ryegrass and Canary but not Bahia or Bermuda grasses. Timothy, Canary and Ryegrass inhibited IgE reactivity with Ryegrass and Bahia grass, whereas Bahia, Johnson and Bermuda grass did not inhibit IgE reactivity with Ryegrass. Conclusions: The majority of Ryegrass allergic patients also showed serum IgE reactivity with Bahia grass PE. However, Bahia grass and Ryegrass had only limited IgE cross-reactivity indicating that Bahia grass should be considered in diagnosis and treatment of patients with hay fever late in' the grass pollen season.
Resumo:
Two monoclonal antibodies (mAb) CB268 and CII-C1 to type II collagen (CII) react with precisely the same conformational epitope constituted by the residues ARGLT on the three chains of the CII triple helix. The antibodies share structural similarity, with most differences in the complementarity determining region 3 of the heavy chain (HCDR3). The fine reactivity of these mAbs was investigated by screening two nonameric phage-displayed random peptide libraries. For each mAb, there were phage clones (phagotopes) that reacted strongly by ELISA only with the selecting mAb, and inhibited binding to CII only for that mAb, not the alternate mAb. Nonetheless, a synthetic peptide RRLPFGSQM corresponding to an insert from a highly reactive CII-C1-selected phagotope, which was unreactive (and non-inhibitory) with CB268, inhibited the reactivity of CB268 with CII. Most phage-displayed peptides contained a motif in the first part of the molecule that consisted of two basic residues adjacent to at least one hydrophobic residue (e.g. RRL or LRR), but the second portion of the peptides differed for the two mAbs. We predict that conserved CDR sequences interact with the basic-basic-hydrophobic motif, whereas non-conserved amino acids in the binding sites (especially HCDR3) interact with unique peptide sequences and limit cross-reactivity. The observation that two mAbs can react identically with a single epitope on one antigen (CII), but show no cross-reactivity when tested against a second (phagotope) indicates that microorganisms could exhibit mimics capable of initiating autoimmunity without this being evident from conventional assays.
Resumo:
Background: IgE is the pivotal-specific effector molecule of allergic reactions yet it remains unclear whether the elevated production of IgE in atopic individuals is due to superantigen activation of B cell populations, increased antibody class switching to IgE or oligoclonal allergen-driven IgE responses. Objectives: To increase our understanding of the mechanisms driving IgE responses in allergic disease we examined immunoglobulin variable regions of IgE heavy chain transcripts from three patients with seasonal rhinitis due to grass pollen allergy. Methods: Variable domain of heavy chain-epsilon constant domain 1 cDNAs were amplified from peripheral blood using a two-step semi-nested PCR, cloned and sequenced. Results: The VH gene family usage in subject A was broadly based, but there were two clusters of sequences using genes VH 3-9 and 3-11 with unusually low levels of somatic mutations, 0-3%. Subject B repeatedly used VH 1-69 and subject C repeatedly used VH 1-02, 1-46 and 5a genes. Most clones were highly mutated being only 86-95% homologous to their germline VH gene counterparts and somatic mutations were more abundant at the complementarity determining rather than framework regions. Multiple sequence alignment revealed both repeated use of particular VH genes as well as clonal relatedness among clusters of IgE transcripts. Conclusion: In contrast to previous studies we observed no preferred VH gene common to IgE transcripts of the three subjects allergic to grass pollen. Moreover, most of the VH gene characteristics of the IgE transcripts were consistent with oligoclonal antigen-driven IgE responses.
Resumo:
Purified proteins are mandatory for molecular, immunological and cellular studies. However, purification of proteins from complex mixtures requires specialised chromatography methods (i.e., gel filtration, ion exchange, etc.) using fast protein liquid chromatography (FPLC) or high-performance liquid chromatography (HPLC) systems. Such systems are expensive and certain proteins require two or more different steps for sufficient purity and generally result in low recovery. The aim of this study was to develop a rapid, inexpensive and efficient gel-electrophoresis-based protein purification method using basic and readily available laboratory equipment. We have used crude rye grass pollen extract to purify the major allergens Lol p 1 and Lol p 5 as the model protein candidates. Total proteins were resolved on large primary gel and Coomassie Brilliant Blue (CBB)-stained Lol p 1/5 allergens were excised and purified on a secondary "mini"-gel. Purified proteins were extracted from unstained separating gels and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot analyses. Silver-stained SDS-PAGE gels resolved pure proteins (i.e., 875 μg of Lol p 1 recovered from a 8 mg crude starting material) while immunoblot analysis confirmed immunological reactivity of the purified proteins. Such a purification method is rapid, inexpensive, and efficient in generating proteins of sufficient purity for use in monoclonal antibody (mAb) production, protein sequencing and general molecular, immunological, and cellular studies.
Resumo:
The major diabetes autoantigen, glutamic acid decarboxylase (GAD65), contains a region of sequence similarity, including six identical residues PEVKEK, to the P2C protein of coxsackie B virus, suggesting that cross-reactivity between coxsackie B virus and GAD65 can initiate autoimmune diabetes. We used the human islet cell mAbs MICA3 and MICA4 to identify the Ab epitopes of GAD65 by screening phage-displayed random peptide libraries. The identified peptide sequences could be mapped to a homology model of the pyridoxal phosphate (PLP) binding domain of GAD65. For MICA3, a surface loop containing the sequence PEVKEK and two adjacent exposed helixes were identified in the PLP binding domain as well as a region of the C terminus of GAD65 that has previously been identified as critical for MICA3 binding. To confirm that the loop containing tile PEVKEK sequence contributes to the MICA3 epitope, this loop was deleted by mutagenesis. This reduced binding of MICA3 by 70%. Peptide sequences selected using MICA4 were rich in basic or hydroxyl-containing amino acids, and the surface of the GAD65 PLP-binding domain surrounding Lys358, which is known to be critical for MICA4 binding, was likewise rich in these amino acids. Also, the two phage most reactive width MICA4 encoded the motif VALxG, and the reverse of this sequence, LAV, was located in this same region. Thus, we have defined the MICA3 and MICA4 epitopes on GAD65 using the combination of phage display, molecular modeling, and mutagenesis and have provided compelling evidence for the involvement of the PEVKEK loop in the MICA3 epitope.