896 resultados para health behaviors
Resumo:
Enterococci are versatile Gram-positive bacteria that can survive under extreme conditions. Most enterococci are non-virulent and found in the gastrointestinal tract of humans and animals. Other strains are opportunistic pathogens that contribute to a large number of nosocomial infections globally. Epidemiological studies demonstrated a direct relationship between the density of enterococci in surface waters and the risk of swimmer-associated gastroenteritis. The distribution of infectious enterococcal strains from the hospital environment or other sources to environmental water bodies through sewage discharge or other means, could increase the prevalence of these strains in the human population. Environmental water quality studies may benefit from focusing on a subset of Enterococcus spp. that are consistently associated with sources of faecal pollution such as domestic sewage, rather than testing for the entire genus. E. faecalis and E. faecium are potentially good focal species for such studies, as they have been consistently identified as the dominant Enterococcus spp. in human faeces and sewage. On the other hand enterococcal infections are predominantly caused by E. faecalis and E. faecium. The characterisation of E. faecalis and E. faecium is important in studying their population structures, particularly in environmental samples. In developing and implementing rapid, robust molecular genotyping techniques, it is possible to more accurately establish the relationship between human and environmental enterococci. Of particular importance, is to determine the distribution of high risk enterococcal clonal complexes, such as E. faecium clonal complex 17 and E. faecalis clonal complexes 2 and 9 in recreational waters. These clonal complexes are recognized as particularly pathogenic enterococcal genotypes that cause severe disease in humans globally. The Pimpama-Coomera watershed is located in South East Queensland, Australia and was investigated in this study mainly because it is used intensively for agriculture and recreational purposes and has a strong anthropogenic impact. The primary aim of this study was to develop novel, universally applicable, robust, rapid and cost effective genotyping methods which are likely to yield more definitive results for the routine monitoring of E. faecalis and E. faecium, particularly in environmental water sources. To fullfill this aim, new genotyping methods were developed based on the interrogation of highly informative single nucleotide polymorphisms (SNPs) located in housekeeping genes of both E. faecalis and E. faecium. SNP genotyping was successfully applied in field investigations of the Coomera watershed, South-East Queensland, Australia. E. faecalis and E. faecium isolates were grouped into 29 and 23 SNP profiles respectively. This study showed the high longitudinal diversity of E. faecalis and E. faecium over a period of two years, and both human-related and human-specific SNP profiles were identified. Furthermore, 4.25% of E. faecium strains isolated from water was found to correspond to the important clonal complex-17 (CC17). Strains that belong to CC17 cause the majority of hospital outbreaks and clinical infections globally. Of the six sampling sites of the Coomera River, Paradise Point had the highest number of human-related and human-specific E. faecalis and E. faecium SNP profiles. The secondary aim of this study was to determine the antibiotic-resistance profiles and virulence traits associated with environmental E. faecalis and E. faecium isolates compared to human pathogenic E. faecalis and E. faecium isolates. This was performed to predict the potential health risks associated with coming into contact with these strains in the Coomera watershed. In general, clinical isolates were found to be more resistant to all the antibiotics tested compared to water isolates and they harbored more virulence traits. Multi-drug resistance was more prevalent in clinical isolates (71.18% of E. faecalis and 70.3 % of E. faecium) compared to water isolates (only 5.66 % E. faecium). However, tetracycline, gentamicin, ciprofloxacin and ampicillin resistance was observed in water isolates. The virulence gene esp was the most prevalent virulence determinant observed in clinical isolates (67.79% of E. faecalis and 70.37 % of E. faecium), and this gene has been described as a human-specific marker used for microbial source tracking (MST). The presence of esp in water isolates (16.36% of E. faecalis and 19.14% of E. faecium) could be indicative of human faecal contamination in these waterways. Finally, in order to compare overall gene expression between environmental and clinical strains of E. faecalis, a comparative gene hybridization study was performed. The results of this investigation clearly demonstrated the up-regulation of genes associated with pathogenicity in E. faecalis isolated from water. The expression study was performed at physiological temperatures relative to ambient temperatures. The up-regulation of virulence genes demonstrates that environmental strains of E. faecalis can pose an increased health risk which can lead to serious disease, particularly if these strains belong to the virulent CC17 group. The genotyping techniques developed in this study not only provide a rapid, robust and highly discriminatory tool to characterize E. faecalis and E. faecium, but also enables the efficient identification of virulent enterococci that are distributed in environmental water sources.
Resumo:
Folate is essential for human health in the prevention of megaloblastic anaemia and neural tube birth defects as well as roles in cardiovascular disease and cancer. Therefore research into environmental factors that may impact folate status, such as solar ultraviolet radiation, is of great health significance. In vitro studies have shown that ultraviolet (UV) radiation can degrade folate and folic acid in human blood and this has been confirmed in several human studies. Despite these findings, there is a dearth of epidemiological research into investigating the relationship between folate status and the links to solar UV exposure.
Resumo:
Aim: Individuals with intellectual disability (ID) have higher rates of mental health problems than the general population. Assessment tends to rely heavily on self-report, but persons with ID often have difficulties in identifying and describing their own thoughts and feelings. Measures that are psychometrically sound with typically developing populations may not be as robust in samples with ID. The aim of the current study was to examine a range of self-report measures for assessing the mental health of children with ID, and to consider the appropriateness of minor modifications to those instruments. Method: The participants were 58 children with ID (mean 11.7 years) attending Year 6 in mainstream primary schools. At the first time point they completed four established measures of depression, anxiety and mood. Minor modifications were made to wording and format at re-administration six months later. Results: Internal consistency varied considerably across measures. Modifications resulted in small or no improvements, but the results were relatively consistent over time and across similar measures. Some gender differences were evident. Conclusions: The findings confirm the difficulties that children with ID may have when responding to self-report measures of mental health, and suggest that care should be taken in choice of instruments. While modifications can produce small improvements, it is clear that more robust measures of mental health are needed for persons with ID.
Resumo:
There is an ongoing level of organizational-wide change (such as empowerment and downsizing) occurring within the Australian health care sector. However, there is a paucity of empirical evidence on how public and nonprofit sector nurses cope with these organizational-wide change initiatives and their consequences on individual and work outcomes. This will be the primary aim of the current paper. To this end, a path model is developed base on an integration of existing theoretical perspectives on occupational stress, change management, and person-organizational fit. Data were collected from 252 public and not-for-profit sector nurses. The path analysis suggests that public and nonprofit nurses experience positive and negative change initiatives. Negative change initiatives resulted in an increase in the level of administrative-related stressors. Nurses with more congruent values report less experience with administrative stressors. As nurses experienced more administrative stressors, they tend to report more job dissatisfaction. Nurses whose values were more congruent during organizational change reported higher level of psychological wellbeing. Nurses who were had higher level of psychological wellbeing were found to have higher job satisfaction, which subsequently led to a higher level of organizational commitment.
Resumo:
Maternal deaths have been a critical issue for women living in rural and remote areas. The need to travel long distances, the shortage of primary care providers such as physicians, specialists and nurses, and the closing of small hospitals have been problems identified in many rural areas. Some research work has been undertaken and a few techniques have been developed to remotely measure the physiological condition of pregnant women through sophisticated ultrasound equipment. There are numerous ways to reduce maternal deaths, and an important step is to select the right approaches to achieving this reduction. One such approach is the provision of decision support systems in rural and remote areas. Decision support systems (DSSs) have already shown a great potential in many health fields. This thesis proposes an ingenious decision support system (iDSS) based on the methodology of survey instruments and identification of significant variables to be used in iDSS using statistical analysis. A survey was undertaken with pregnant women and factorial experimental design was chosen to acquire sample size. Variables with good reliability in any one of the statistical techniques such as Chi-square, Cronbach’s á and Classification Tree were incorporated in the iDSS. The decision support system was developed with significant variables such as: Place of residence, Seeing the same doctor, Education, Tetanus injection, Baby weight, Previous baby born, Place of birth, Assisted delivery, Pregnancy parity, Doctor visits and Occupation. The ingenious decision support system was implemented with Visual Basic as front end and Microsoft SQL server management as backend. Outcomes of the ingenious decision support system include advice on Symptoms, Diet and Exercise to pregnant women. On conditional system was sent and validated by the gynaecologist. Another outcome of ingenious decision support system was to provide better pregnancy health awareness and reduce long distance travel, especially for women in rural areas. The proposed system has qualities such as usefulness, accuracy and accessibility.
Resumo:
China continues to face great challenges in meeting the health needs of its large population. The challenges are not just lack of resources, but also how to use existing resources more efficiently, more effectively, and more equitably. Now a major unaddressed challenge facing China is how to reform an inefficient, poorly organized health care delivery system. The objective of this study is to analyze the role of private health care provision in China and discuss the implications of increasing private-sector development for improving health system performance. This study is based on an extensive literature review, the purpose of which was to identify, summarize, and evaluate ideas and information on private health care provision in China. In addition, the study uses secondary data analysis and the results of previous study by the authors to highlight the current situation of private health care provision in one province of China. This study found that government-owned hospitals form the backbone of the health care system and also account for most health care service provision. However, even though the public health care system is constantly trying to adapt to population needs and improve its performance, there are many problems in the system, such as limited access, low efficiency, poor quality, cost inflation, and low patient satisfaction. Currently, private hospitals are relatively rare, and private health care as an important component of the health care system in China has received little policy attention. It is argued that policymakers in China should recognize the role of private health care provision for health system performance, and then define and achieve an appropriate role for private health care provision in helping to respond to the many challenges facing the health system in present-day China.
Resumo:
Acoustic emission (AE) is the phenomenon where stress waves are generated due to rapid release of energy within a material caused by sources such as crack initiation or growth. AE technique involves recording the stress waves by means of sensors and subsequent analysis of the recorded signals to gather information about the nature of the source. Though AE technique is one of the popular non destructive evaluation (NDE) techniques for structural health monitoring of mechanical, aerospace and civil structures; several challenges still exist in successful application of this technique. Presence of spurious noise signals can mask genuine damage‐related AE signals; hence a major challenge identified is finding ways to discriminate signals from different sources. Analysis of parameters of recorded AE signals, comparison of amplitudes of AE wave modes and investigation of uniqueness of recorded AE signals have been mentioned as possible criteria for source differentiation. This paper reviews common approaches currently in use for source discrimination, particularly focusing on structural health monitoring of civil engineering structural components such as beams; and further investigates the applications of some of these methods by analyzing AE data from laboratory tests.
Resumo:
Columns and walls in buildings are subjected to a number of load increments during the construction and service stages. The combination of these load increments and poor quality construction can cause defects in these structural components. In addition, defects can also occur due to accidental or deliberate actions by users of the building during construction and service stages. Such defects should be detected early so that remedial measures can be taken to improve life time serviceability and performance of the building. This paper uses micro and macro model upgrading methods during construction and service stages of a building based on the mass and stiffness changes to develop a comprehensive procedure for locating and detecting defects in columns and walls of buildings. Capabilities of the procedure are illustrated through examples.
Resumo:
The modern structural diagnosis process is rely on vibration characteristics to assess safer serviceability level of the structure. This paper examines the potential of change in flexibility method to use in damage detection process and two main practical constraints associated with it. The first constraint addressed in this paper is reduction in number of data acquisition points due to limited number of sensors. Results conclude that accuracy of the change in flexibility method is influenced by the number of data acquisition points/sensor locations in real structures. Secondly, the effect of higher modes on damage detection process has been studied. This addresses the difficulty of extracting higher order modal data with available sensors. Four damage indices have been presented to identify their potential of damage detection with respect to different locations and severity of damage. A simply supported beam with two degrees of freedom at each node is considered only for a single damage cases throughout the paper.
Resumo:
There are a variety of reasons and motivations for people to subscribe to community-supported agriculture (CSA) schemes, many of which include social, ethical, environmental, and economical benefits. The global rise of food allergies and food related health issues in recent years has led to a growing number of initiatives particularly in developing countries to raise more awareness of the current situation amongst individuals, organisations, and government bodies, and to plan for its implications for the existing food and health systems. Based on a mixed method research conducted in Australia, this paper argues that personal health matters are one of the key motivators for consumers to seek out alternative food systems, particularly CSA initiatives. In addition, it presents the willingness for consumers to seek out information about the food they consume and proposes that technology plays a key role in being used as a conduit to share and investigate information relating to alternative food systems. Further research is required to determine the variety of benefits and opportunities alternative food systems can provide consumers with food related health issues.
Resumo:
Structural health monitoring (SHM) refers to the procedure used to assess the condition of structures so that their performance can be monitored and any damage can be detected early. Early detection of damage and appropriate retrofitting will aid in preventing failure of the structure and save money spent on maintenance or replacement and ensure the structure operates safely and efficiently during its whole intended life. Though visual inspection and other techniques such as vibration based ones are available for SHM of structures such as bridges, the use of acoustic emission (AE) technique is an attractive option and is increasing in use. AE waves are high frequency stress waves generated by rapid release of energy from localised sources within a material, such as crack initiation and growth. AE technique involves recording these waves by means of sensors attached on the surface and then analysing the signals to extract information about the nature of the source. High sensitivity to crack growth, ability to locate source, passive nature (no need to supply energy from outside, but energy from damage source itself is utilised) and possibility to perform real time monitoring (detecting crack as it occurs or grows) are some of the attractive features of AE technique. In spite of these advantages, challenges still exist in using AE technique for monitoring applications, especially in the area of analysis of recorded AE data, as large volumes of data are usually generated during monitoring. The need for effective data analysis can be linked with three main aims of monitoring: (a) accurately locating the source of damage; (b) identifying and discriminating signals from different sources of acoustic emission and (c) quantifying the level of damage of AE source for severity assessment. In AE technique, the location of the emission source is usually calculated using the times of arrival and velocities of the AE signals recorded by a number of sensors. But complications arise as AE waves can travel in a structure in a number of different modes that have different velocities and frequencies. Hence, to accurately locate a source it is necessary to identify the modes recorded by the sensors. This study has proposed and tested the use of time-frequency analysis tools such as short time Fourier transform to identify the modes and the use of the velocities of these modes to achieve very accurate results. Further, this study has explored the possibility of reducing the number of sensors needed for data capture by using the velocities of modes captured by a single sensor for source localization. A major problem in practical use of AE technique is the presence of sources of AE other than crack related, such as rubbing and impacts between different components of a structure. These spurious AE signals often mask the signals from the crack activity; hence discrimination of signals to identify the sources is very important. This work developed a model that uses different signal processing tools such as cross-correlation, magnitude squared coherence and energy distribution in different frequency bands as well as modal analysis (comparing amplitudes of identified modes) for accurately differentiating signals from different simulated AE sources. Quantification tools to assess the severity of the damage sources are highly desirable in practical applications. Though different damage quantification methods have been proposed in AE technique, not all have achieved universal approval or have been approved as suitable for all situations. The b-value analysis, which involves the study of distribution of amplitudes of AE signals, and its modified form (known as improved b-value analysis), was investigated for suitability for damage quantification purposes in ductile materials such as steel. This was found to give encouraging results for analysis of data from laboratory, thereby extending the possibility of its use for real life structures. By addressing these primary issues, it is believed that this thesis has helped improve the effectiveness of AE technique for structural health monitoring of civil infrastructures such as bridges.
Resumo:
The serviceability and safety of bridges are crucial to people’s daily lives and to the national economy. Every effort should be taken to make sure that bridges function safely and properly as any damage or fault during the service life can lead to transport paralysis, catastrophic loss of property or even casualties. Nonetheless, aggressive environmental conditions, ever-increasing and changing traffic loads and aging can all contribute to bridge deterioration. With often constrained budget, it is of significance to identify bridges and bridge elements that should be given higher priority for maintenance, rehabilitation or replacement, and to select optimal strategy. Bridge health prediction is an essential underpinning science to bridge maintenance optimization, since the effectiveness of optimal maintenance decision is largely dependent on the forecasting accuracy of bridge health performance. The current approaches for bridge health prediction can be categorised into two groups: condition ratings based and structural reliability based. A comprehensive literature review has revealed the following limitations of the current modelling approaches: (1) it is not evident in literature to date that any integrated approaches exist for modelling both serviceability and safety aspects so that both performance criteria can be evaluated coherently; (2) complex system modelling approaches have not been successfully applied to bridge deterioration modelling though a bridge is a complex system composed of many inter-related bridge elements; (3) multiple bridge deterioration factors, such as deterioration dependencies among different bridge elements, observed information, maintenance actions and environmental effects have not been considered jointly; (4) the existing approaches are lacking in Bayesian updating ability to incorporate a variety of event information; (5) the assumption of series and/or parallel relationship for bridge level reliability is always held in all structural reliability estimation of bridge systems. To address the deficiencies listed above, this research proposes three novel models based on the Dynamic Object Oriented Bayesian Networks (DOOBNs) approach. Model I aims to address bridge deterioration in serviceability using condition ratings as the health index. The bridge deterioration is represented in a hierarchical relationship, in accordance with the physical structure, so that the contribution of each bridge element to bridge deterioration can be tracked. A discrete-time Markov process is employed to model deterioration of bridge elements over time. In Model II, bridge deterioration in terms of safety is addressed. The structural reliability of bridge systems is estimated from bridge elements to the entire bridge. By means of conditional probability tables (CPTs), not only series-parallel relationship but also complex probabilistic relationship in bridge systems can be effectively modelled. The structural reliability of each bridge element is evaluated from its limit state functions, considering the probability distributions of resistance and applied load. Both Models I and II are designed in three steps: modelling consideration, DOOBN development and parameters estimation. Model III integrates Models I and II to address bridge health performance in both serviceability and safety aspects jointly. The modelling of bridge ratings is modified so that every basic modelling unit denotes one physical bridge element. According to the specific materials used, the integration of condition ratings and structural reliability is implemented through critical failure modes. Three case studies have been conducted to validate the proposed models, respectively. Carefully selected data and knowledge from bridge experts, the National Bridge Inventory (NBI) and existing literature were utilised for model validation. In addition, event information was generated using simulation to demonstrate the Bayesian updating ability of the proposed models. The prediction results of condition ratings and structural reliability were presented and interpreted for basic bridge elements and the whole bridge system. The results obtained from Model II were compared with the ones obtained from traditional structural reliability methods. Overall, the prediction results demonstrate the feasibility of the proposed modelling approach for bridge health prediction and underpin the assertion that the three models can be used separately or integrated and are more effective than the current bridge deterioration modelling approaches. The primary contribution of this work is to enhance the knowledge in the field of bridge health prediction, where more comprehensive health performance in both serviceability and safety aspects are addressed jointly. The proposed models, characterised by probabilistic representation of bridge deterioration in hierarchical ways, demonstrated the effectiveness and pledge of DOOBNs approach to bridge health management. Additionally, the proposed models have significant potential for bridge maintenance optimization. Working together with advanced monitoring and inspection techniques, and a comprehensive bridge inventory, the proposed models can be used by bridge practitioners to achieve increased serviceability and safety as well as maintenance cost effectiveness.
Resumo:
A significant number of patients diagnosed with primary brain tumours report unmet information needs. Using concept mapping methodology, this study aimed to identify strategies for improving information provision, and to describe factors that health professionals understood to influence their provision of information to patients with brain tumours and their families. Concept mapping is a mixed methods approach that uses statistical methods to represent participants’ perceived relationships between elements as conceptual maps. These maps, and results of associated data collection and analyses, are used to extract concepts involved in information provision to these patients. Thirty health professionals working across a range of neuro-oncology roles and settings participated in the concept mapping process. Participants rated a care coordinator as the most important strategy for improving brain tumour care, with psychological support as a whole rated as the most important element of care. Five major themes were identified as facilitating information provision: health professionals’ communication skills, style and attitudes; patients’ needs and preferences; perceptions of patients’ need for protection and initiative; rapport and continuity between patients and health professionals; and the nature of the health care system. Overall, health professionals conceptualised information provision as ‘individualised’, dependent on these interconnected personal and environmental factors.