919 resultados para harmonic allocation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a set of P. Chem. problems posed at slightly higher than the normal text book level, for students who are continuing in the study of this subject.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study attempts to analyze the underlying factors and motives influencing the allocation of discretionary state expenditures. The fact that some cities receive more money than other cities begs the question of what accounts for this variation. After framing the provision of state money within the theoretical framework of political patronage, a case study of Governor Rowland’s tenure in office and the accompanying expenditures to Connecticut’s 17 largest cities from 1995 to 2004 was conducted to evaluate whether a disproportionate amount of money was given to Rowland’s hometown of Waterbury, Connecticut. Besides employing a statistical analysis that determined that cities with similar characteristics received different amounts of money, interviewing was conducted to identify reasons for such variation. The results indicate that Waterbury received a greater amount of money than was predicted based on the city’s economic and demographic characteristics, and that non-objective and biased factors such as favoritism, the need to reward political support, or the desire to increase political loyalty sometimes take precedence over more objective factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular dynamical simulation of the normal vibrational mode of water which involves H-O-H angle deformation, when driven by an external force, can be used to see how a driven harmonic oscillator, classically, is associated with the infra-red spectrum of water (and the absorption for this particular normal mode).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The HCl molecule is simulated (using Maple) in its dynamics, for both vibrational (and implied) rotational motions. A discussion of the center of mass transformations involved is part of the total presentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time variable gravity fields, reflecting variations of mass distribution in the system Earth is one of the key parameters to understand the changing Earth. Mass variations are caused either by redistribution of mass in, on or above the Earth's surface or by geophysical processes in the Earth's interior. The first set of observations of monthly variations of the Earth gravity field was provided by the US/German GRACE satellite mission beginning in 2002. This mission is still providing valuable information to the science community. However, as GRACE has outlived its expected lifetime, the geoscience community is currently seeking successor missions in order to maintain the long time series of climate change that was begun by GRACE. Several studies on science requirements and technical feasibility have been conducted in the recent years. These studies required a realistic model of the time variable gravity field in order to perform simulation studies on sensitivity of satellites and their instrumentation. This was the primary reason for the European Space Agency (ESA) to initiate a study on ''Monitoring and Modelling individual Sources of Mass Distribution and Transport in the Earth System by Means of Satellites''. The goal of this interdisciplinary study was to create as realistic as possible simulated time variable gravity fields based on coupled geophysical models, which could be used in the simulation processes in a controlled environment. For this purpose global atmosphere, ocean, continental hydrology and ice models were used. The coupling was performed by using consistent forcing throughout the models and by including water flow between the different domains of the Earth system. In addition gravity field changes due to solid Earth processes like continuous glacial isostatic adjustment (GIA) and a sudden earthquake with co-seismic and post-seismic signals were modelled. All individual model results were combined and converted to gravity field spherical harmonic series, which is the quantity commonly used to describe the Earth's global gravity field. The result of this study is a twelve-year time-series of 6-hourly time variable gravity field spherical harmonics up to degree and order 180 corresponding to a global spatial resolution of 1 degree in latitude and longitude. In this paper, we outline the input data sets and the process of combining these data sets into a coherent model of temporal gravity field changes. The resulting time series was used in some follow-on studies and is available to anybody interested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coccolithophores are unicellular phytoplankton that produce calcium carbonate coccoliths as an exoskeleton. Emiliania huxleyi, the most abundant coccolithophore in the world's ocean, plays a major role in the global carbon cycle by regulating the exchange of CO2 across the ocean-atmosphere interface through photosynthesis and calcium carbonate precipitation. As CO2 concentration is rising in the atmosphere, the ocean is acidifying and ammonium (NH4) concentration of future ocean water is expected to rise. The latter is attributed to increasing anthropogenic nitrogen (N) deposition, increasing rates of cyanobacterial N2 fixation due to warmer and more stratified oceans, and decreased rates of nitrification due to ocean acidification. Thus future global climate change will cause oceanic phytoplankton to experience changes in multiple environmental parameters including CO2, pH, temperature and nitrogen source. This study reports on the combined effect of elevated pCO2 and increased NH4 to nitrate (NO3) ratio (NH4/NO3) on E. huxleyi, maintained in continuous cultures for more than 200 generations under two pCO2 levels and two different N sources. Here we show that NH4 assimilation under N-replete conditions depresses calcification at both low and high pCO2, alters coccolith morphology, and increases primary production. We observed that N source and pCO2 synergistically drive growth rates, cell size and the ratio of inorganic to organic carbon. These responses to N source suggest that, compared to increasing CO2 alone, a greater disruption of the organic carbon pump could be expected in response to the combined effect of increased NH4/NO3 ratio and CO2 level in the future acidified ocean. Additional experiments conducted under lower nutrient conditions are needed prior to extrapolating our findings to the global oceans. Nonetheless, our results emphasize the need to assess combined effects of multiple environmental parameters on phytoplankton biology in order to develop accurate predictions of phytoplankton responses to ocean acidification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate change, including ocean acidification (OA), presents fundamental challenges to marine biodiversity and sustained ecosystem health. We determined reproductive response (measured as naupliar production), cuticle composition and stage specific growth of the copepod Tisbe battagliai over three generations at four pH conditions (pH 7.67, 7.82, 7.95, and 8.06). Naupliar production increased significantly at pH 7.95 compared with pH 8.06 followed by a decline at pH 7.82. Naupliar production at pH 7.67 was higher than pH 7.82. We attribute the increase at pH 7.95 to an initial stress response which was succeeded by a hormesis-like response at pH 7.67. A multi-generational modelling approach predicted a gradual decline in naupliar production over the next 100 years (equivalent to approximately 2430 generations). There was a significant growth reduction (mean length integrated across developmental stage) relative to controls. There was a significant increase in the proportion of carbon relative to oxygen within the cuticle as seawater pH decreased. Changes in growth, cuticle composition and naupliar production strongly suggest that copepods subjected to OA-induced stress preferentially reallocate resources towards maintaining reproductive output at the expense of somatic growth and cuticle composition. These responses may drive shifts in life history strategies that favour smaller brood sizes, females and perhaps later maturing females, with the potential to profoundly destabilise marine trophodynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus. Size, metabolic rate, biochemical content, and gene expression were not different in larvae growing under control and seawater acidification treatments. Measurements limited to those levels of biological analysis did not reveal the biochemical mechanisms of response to ocean acidification that occurred at the cellular level. In vivo rates of protein synthesis and ion transport increased 50% under acidification. Importantly, the in vivo physiological increases in ion transport were not predicted from total enzyme activity or gene expression. Under acidification, the increased rates of protein synthesis and ion transport that were sustained in growing larvae collectively accounted for the majority of available ATP (84%). In contrast, embryos and prefeeding and unfed larvae in control treatments allocated on average only 40% of ATP to these same two processes. Understanding the biochemical strategies for accommodating increases in metabolic energy demand and their biological limitations can serve as a quantitative basis for assessing sublethal effects of global change. Variation in the ability to allocate ATP differentially among essential functions may be a key basis of resilience to ocean acidification and other compounding environmental stressors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthropogenic CO2 emission will lead to an increase in seawater pCO2 of up to 80-100 Pa (800-1000 µatm) within this century and to an acidification of the oceans. Green sea urchins (Strongylocentrotus droebachiensis) occurring in Kattegat experience seasonal hypercapnic and hypoxic conditions already today. Thus, anthropogenic CO2 emissions will add up to existing values and will lead to even higher pCO2 values >200 Pa (>2000 µatm). To estimate the green sea urchins' potential to acclimate to acidified seawater, we calculated an energy budget and determined the extracellular acid base status of adult S. droebachiensis exposed to moderately (102 to 145 Pa, 1007 to 1431 µatm) and highly (284 to 385 Pa, 2800 to 3800 µatm) elevated seawater pCO2 for 10 and 45 days. A 45 - day exposure to elevated pCO2 resulted in a shift in energy budgets, leading to reduced somatic and reproductive growth. Metabolic rates were not significantly affected, but ammonium excretion increased in response to elevated pCO2. This led to decreased O:N ratios. These findings suggest that protein metabolism is possibly enhanced under elevated pCO2 in order to support ion homeostasis by increasing net acid extrusion. The perivisceral coelomic fluid acid-base status revealed that S. droebachiensis is able to fully (intermediate pCO2) or partially (high pCO2) compensate extracellular pH (pHe) changes by accumulation of bicarbonate (maximum increases 2.5 mM), albeit at a slower rate than typically observed in other taxa (10 day duration for full pHe compensation). At intermediate pCO2, sea urchins were able to maintain fully compensated pHe for 45 days. Sea urchins from the higher pCO2 treatment could be divided into two groups following medium-term acclimation: one group of experimental animals (29%) contained remnants of food in their digestive system and maintained partially compensated pHe (+2.3 mM HCO3), while the other group (71%) exhibited an empty digestive system and a severe metabolic acidosis (-0.5 pH units, -2.4 mM HCO3). There was no difference in mortality between the three pCO2 treatments. The results of this study suggest that S. droebachiensis occurring in the Kattegat might be pre-adapted to hypercapnia due to natural variability in pCO2 in its habitat. We show for the first time that some echinoderm species can actively compensate extracellular pH. Seawater pCO2 values of >200 Pa, which will occur in the Kattegat within this century during seasonal hypoxic events, can possibly only be endured for a short time period of a few weeks. Increases in anthropogenic CO2 emissions and leakages from potential sub-seabed CO2 storage (CCS) sites thus impose a threat to the ecologically and economically important species S. droebachiensis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a unique dataset obtained from rural Andhra Pradesh, India that contains direct observations of household access to credit and detailed time use, results of this study indicate that credit market failures lead to a substantial reallocation of time used by children for activities such as schooling, household chores, remunerative work, and leisure. The negative effects of credit constraints on schooling amount to a 60% decrease of average schooling time. However, the magnitude of decrease due to credit constraints is about half that of the increase in both domestic and remunerative child labor, the other half appearing to come from a reduction in leisure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper develops a quantitative measure of allocation efficiency, which is an extension of the dynamic Olley-Pakes productivity decomposition proposed by Melitz and Polanec (2015). The extended measure enables the simultaneous capture of the degree of misallocation within a group and between groups and parallel to capturing the contribution of entering and exiting firms to aggregate productivity growth. This measure empirically assesses the degree of misallocation in China using manufacturing firm-level data from 2004 to 2007. Misallocation among industrial sectors has been found to increase over time, and allocation efficiency within an industry has been found to worsen in industries that use more capital and have firms with relatively higher state-owned market shares. Allocation efficiency among three ownership sectors (state-owned, domestic private, and foreign sectors) tends to improve in industries wherein the market share moves from a less-productive state-owned sector to a more productive private sector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seeding plasma-based softx-raylaser (SXRL) demonstrated diffraction-limited, fully coherent in space and in time beam but with energy not exceeding 1 μJ per pulse. Quasi-steady-state (QSS) plasmas demonstrated to be able to store high amount of energy and then amplify incoherent SXRL up to several mJ. Using 1D time-dependant Bloch–Maxwell model including amplification of noise, we demonstrated that femtosecond HHG cannot be efficiently amplified in QSS plasmas. However, using Chirped Pulse Amplification concept on HHG seed allows to extract most of the stored energy, reaching up to 5 mJ in fully coherent pulses that can be compressed down to 130 fs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amplification of high-order harmonics (HOH) in a plasma-based amplifier is a multiscale, temporal phenomenon that couples plasma hydrodynamics, atomic processes, and HOH electromagnetic fields. We use a one-dimensional, time-dependent Maxwell-Bloch code to compare the natural amplification regime and another regime where plasma polarization is constantly forced by the HOH. In this regime, a 10-MW (i.e., 100 times higher than current seeded soft x-ray laser power), 1.5-μJ, 140-fs pulse free from the parasitic temporal structures appearing on the natural amplification regime can be obtained.