968 resultados para green synthesis
Resumo:
The development of a new synthesis of 2,6,7,7a-tetrahydro-lβ-hydroxy-4-formyl-7a-methylindene was undertaken involving the preparation of 2,6,7,7a-tetra-hydro-1β-hydroxy-4-methoxymethyl-7a-methylindene because of the erratic yield in the last oxidation step of the reported synthesis of the former compound. Although various attempts to prepare the latter were not successful, interesting rearrangement products, the dienone, 5,6,7,7a-tetrahydro-4,7a-dimethyl-5H-indene-1,5-dione and the tricyclic keto alcohol, 2,6-diketo-3-methyltricyclo(5,2,1,0)decan-8-ol, were obtained, the structures of which have been proved by spectral data. Mechanisms for the formation of these products have been proposed.
Resumo:
An efficient in vitro amino acid-incorporating system from Mycobacterium tuberculosis H37Rv was standardized. Ribonucleic acid (RNA) isolated from phage-infected M. smegmatis cells served as natural messenger RNA and directed the incorporation of 14C-amino acids into protein. The effects of various antitubercular drugs and “known inhibitors” of protein synthesis on amino acid incorporation were studied. Antibiotics like chloramphenicol and tetracycline inhibited mycobacterial protein synthesis, though they failed to prevent the growth of the organism. This failure was shown to be due to the impermeability of mycobacteria to these drugs by use of “membrane-active” agents along with the antibiotics in growth inhibition studies. Several independent streptomycin-resistant mutants of M. tuberculosis H37Rv were isolated. Streptomycin inhibited the incorporation of 14C-amino acids into proteins by whole cells of a streptomycin-susceptible strain by more than 90%, whereas very little or no inhibition was observed in either high-level or low-level streptomycin-resistant strains.
Resumo:
1-Methoxycyclohexa-1,4-dienes are readily available from the metal-ammonia-alcohol reduction of aromatic ethers. The use of these dihydrocompounds in the synthesis of a variety of natural products is reviewed.
Resumo:
The velocity ratio algorithm developed from a heuristic study of transfer matrix multiplication has been employed to bring out the relative effects of the elements constituting a linear, one-dimensional acoustic filter, the overall dimensions of which are fixed, and synthesize a suitable straight-through configuration for a low-pass, wide-band, non-dissipative acoustic filter. The potential of the foregoing approach in applications to the rational design of practical acoustic filters such as automotive mufflers is indicated.
Resumo:
Stable 1,2-dihydroisoquinolines have been synthesized by an amide catalysed novel isomerization reaction of 5,6-dihydroisoquinolines.
Resumo:
Stay-green sorghum plants exhibit greener leaves and stems during the grain-filling period under water-limited conditions compared with their senescent counterparts, resulting in increased grain yield, grain mass, and lodging resistance. Stay-green has been mapped to a number of key chromosomal regions, including Stg1, Stg2, Stg3, and Stg4, but the functions of these individual quantitative trait loci (QTLs) remain unclear. The objective of this study was to show how positive effects of Stg QTLs on grain yield under drought can be explained as emergent consequences of their effects on temporal and spatial water-use patterns that result from changes in leaf-area dynamics. A set of four Stg near-isogenic lines (NILs) and their recurrent parent were grown in a range of field and semicontrolled experiments in southeast Queensland, Australia. These studies showed that the four Stg QTLs regulate canopy size by: (1) reducing tillering via increased size of lower leaves, (2) constraining the size of the upper leaves; and (3) in some cases, decreasing the number of leaves per culm. In addition, they variously affect leaf anatomy and root growth. The multiple pathways by which Stg QTLs modulate canopy development can result in considerable developmental plasticity. The reduction in canopy size associated with Stg QTLs reduced pre-flowering water demand, thereby increasing water availability during grain filling and, ultimately, grain yield. The generic physiological mechanisms underlying the stay-green trait suggest that similar Stg QTLs could enhance post-anthesis drought adaptation in other major cereals such as maize, wheat, and rice.
Resumo:
Rainfall variability is a major challenge to sustainable grazing management in northern Australia, with management often complicated further by large, spatially-heterogeneous paddocks. This paper presents the latest grazing research and associated bio-economic modelling from northern Australia and assesses the extent to which current recommendations to manage for these issues are supported. Overall, stocking around the safe long-term carrying capacity will maintain land condition and maximise long-term profitability. However, stocking rates should be varied in a risk-averse manner as pasture availability varies between years. Periodic wet-season spelling is also essential to maintain pasture condition and allow recovery of overgrazed areas. Uneven grazing distributions can be partially managed through fencing, providing additional water-points and in some cases patch-burning, although the economics of infrastructure development are extremely context-dependent. Overall, complex multi-paddock grazing systems do not appear justified in northern Australia. Provided the key management principles outlined above are applied in an active, adaptive manner, acceptable economic and environmental outcomes will be achieved irrespective of the grazing system applied.
Resumo:
For many years Australian forest pathologists and other scientists have dreaded the arrival of the rust fungus, Puccinia psidii, commonly known as Myrtle Rust, in Australia. This pathogen eventually did arrive in that country and was first detected in New South Wales in 2010 on Willow Myrtle (Agonis flexuosa). It is generally accepted that it entered the country on an ornamental Myrtales* host brought in by a private nursery. Despite efforts to eradicate the invasive rust, it has already spread widely, now occurring along the east coast of Australia, from temperate areas in Victoria and southern North South Wales to tropical areas in north Queensland.
Resumo:
Metal hydrazine nitrate complexes of the type M(N2H4)Nn (NO3)2 where M = Mg, n = 2; M = Mn, Fe, Co, Ni, Zn and Cd and n = 3; metal dihydrazine azide complexes of the type M(N2H4)2 (N3)2 where M = Mg, Co, Ni and Zn; and Mg(N2H4)2 (C1O4)2 have been prepared by dissolving the respective metal powders in the solution of corresponding ammonium salts (NO3, N3 and C1O4) in hydrazine hydrate. These hydrazine complexes were also prepared by the conventional method involving the addition of alcoholic hydrazine hydrate to the aqueous solution of metal salts. The hydrazine complexes have been characterised by chemical analysis, infrared spectra and differential thermal analysis (DTA). Impact sensitivities of hydrazine complexes were determined by the drop weight method. The reactivity of these hydrazine complexes does not change with the method of preparation.
Resumo:
Grignard reaction of ethyl 3-(3,5-dimethoxyphenyl)-propionate (4) followed by cyclodehydration of the carbinol (5) with conc H2SO4 gave 4,6-dimethoxy-3,3-dimethylindane (6). Oxidation of the indane (6) with CrO3-pyridine complex in methylene chloride gave 4,6-dimethoxy-3,3-dimethylindan-1- one (1) in high yield. Conjugate addition of methyl magnesium iodide to methyl α-cyano-β-methyl-3,5-dimethoxycinnamate (11), prepared from 3,5-dimethoxyacetophenone (10) by Knoevenagel condensation, resulted in methyl 2-cyano-3-(3,5-dimethoxyphenyl)-3,3-dimethylpropionate (12). Refluxing the ester (12) with aq DMSO containing sodium chloride gave the corresponding nitrile (15) which underwent Höesch reaction to yield 5,7-dimethoxy-3,3-dimethylindan-1-one (2).
Resumo:
The synthesis of cytochrome P-450 (phenobarbital inducible) and cytochrome P-448 (3-methylcholanthrene inducible) have been studied in rat liver in vivo and in the wheat germ cell-free system using anti- cytochrome P-450 and anti-cytochrome P-448 antibodies. The major mature forms synthesized in vivo correspond to a molecular weight of 47,000 for cytochrome P-450 and 53,000 for cytochrome P-448. Translation of poly(A)-containing RNA from phenobarbital-treated rats in the wheat germ cell-free system reveals that the cell-free product immunoprecipitated with anti-cytochrome P-450 antibody has a molecular weight close to 47,000. In the case of 3-methylcholanthrene, the cell- free product immunoprecipitated with anti-cytochrome P-448 antibody shows a molecular weight around 59,000. Significant conversion of the 59,000 species to the 53,000 species can be demonstrated when the translation is carried out in the presence of microsomal membranes isolated from rat liver. Phenobarbital and 3-methylcholanthrene enhance the translatable messenger.
Resumo:
Breast cancer is the most common cancer in women in Western countries. In the early stages of development most breast cancers are hormone-dependent, and estrogens, especially estradiol, have a pivotal role in their development and progression. One approach to the treatment of hormone-dependent breast cancers is to block the formation of the active estrogens by inhibiting the action of the steroid metabolising enzymes. 17beta-Hydroxysteroid dehydrogenase type 1 (17beta-HSD1) is a key enzyme in the biosynthesis of estradiol, the most potent female sex hormone. The 17beta-HSD1 enzyme catalyses the final step and converts estrone into the biologically active estradiol. Blocking 17beta-HSD1 activity with a specific enzyme inhibitor could provide a means to reduce circulating and tumour estradiol levels and thus promote tumour regression. In recent years 17beta-HSD1 has been recognised as an important drug target. Some inhibitors of 17beta-HSD1 have been reported, however, there are no inhibitors on the market nor have clinical trials been announced. The majority of known 17beta-HSD1 inhibitors are based on steroidal structures, while relatively little has been reported on non-steroidal inhibitors. As compared with 17beta-HSD1 inhibitors based on steroidal structures, non-steroidal compounds could have advantages of synthetic accessibility, drug-likeness, selectivity and non-estrogenicity. This study describes the synthesis of large group of novel 17beta-HSD1 inhibitors based on a non-steroidal thieno[2,3-d]pyrimidin-4(3H)-one core. An efficient synthesis route was developed for the lead compound and subsequently employed in the synthesis of thieno[2,3-d]pyrimidin-4(3H)-one based molecule library. The biological activities and binding of these inhibitors to 17beta-HSD1 and, finally, the quantitative structure activity relationship (QSAR) model are also reported. In this study, several potent and selective 17beta-HSD1 inhibitors without estrogenic activity were identified. This establishment of a novel class of inhibitors is a progressive achievement in 17beta-HSD1 inhibitor development. Furthermore, the 3D-QSAR model, constructed on the basis of this study, offers a powerful tool for future 17beta-HSD1 inhibitor development. As part of the fundamental science underpinning this research, the chemical reactivity of fused (di)cycloalkeno thieno[2,3-d]pyrimidin-4(3H)-ones with electrophilic reagents, i.e. Vilsmeier reagent and dimethylformamide dimethylacetal, was investigated. These findings resulted in a revision of the reaction mechanism of Vilsmeier haloformylation and further contributed to understanding the chemical reactivity of this compound class. This study revealed that the reactivity is dependent upon a stereoelectronic effect arising from different ring conformations.
Resumo:
We report an efficient and fast solvothermal route to prepare highly crystalline monodispersed InP quantum dots. This solvothermal route, not only ensures inert atmosphere, which is strictly required for the synthesis of phase pure InP quantum dots but also allows a reaction temperature as high as 430 degrees C, which is otherwise impossible to achieve using a typical solution chemistry; the higher reaction temperature makes the reaction more facile. This method also has a judicious control over the size of the quantum dots and thus in tuning the bandgap.
Resumo:
Novel Biginelli dihydropyrimidines of biological interest were prepared using p-toluene sulphonic acid as an efficient catalyst. All the thirty-two synthesised dihydropyrimidines were evaluated for their in vitro antioxidant activity using DPPH method. Only, compounds 28 and 29 exhibited reasonably good antioxidant activity. Furthermore, the synthesised Biginelli compounds were subjected for their in vitro anticancer activity against MCF-7 human breast cancer cells. The title compounds were tested at the concentration of 10 μg. Compounds exhibited activity ranging from weak to moderate and, from moderate to high in terms of percentage cytotoxicity. Among them, compounds 10 and 11 exhibited significant anticancer activity. In order to elucidate the three-dimensional structure–activity relationships (3D QSAR) towards their anticancer activity, we subjected them for comparative molecular similarity indices analysis (CoMSIA). Illustration regarding their synthesis, analysis, antioxidant activity, anticancer activity and 3D QSAR study is described.
Resumo:
The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage – the key to the portable electronics of the future.