917 resultados para gravitational search algorithm
Resumo:
In Escherichia coli, the canonical intrinsic terminator of transcription includes a palindrome followed by a U-trail on the transcript. The apparent underrepresentation of such terminators in eubacterial genomes led us to develop a rapid and accurate algorithm, GeSTer, to predict putative intrinsic terminators. Now, we have analyzed 378 genome sequences with an improved version of GeSTer. Our results indicate that the canonical E. coli type terminators are not overwhelmingly abundant in eubacteria. The atypical structures, having stem-loop structures but lacking ‘U’ trail, occur downstream of genes in all the analyzed genomes but different phyla show conserved preference for different types of terminators. This propensity correlates with genomic GC content and presence of the factor, Rho. 60–70% of identified terminators in all the genomes show “optimized” stem-length and ΔG. These results provide evidence that eubacteria extensively rely on the mechanism of intrinsic termination, with a considerable divergence in their structure, positioning and prevalence. The software and detailed results for individual genomes are freely available on request
Resumo:
The maximum independent set problem is NP-complete even when restricted to planar graphs, cubic planar graphs or triangle free graphs. The problem of finding an absolute approximation still remains NP-complete. Various polynomial time approximation algorithms, that guarantee a fixed worst case ratio between the independent set size obtained to the maximum independent set size, in planar graphs have been proposed. We present in this paper a simple and efficient, O(|V|) algorithm that guarantees a ratio 1/2, for planar triangle free graphs. The algorithm differs completely from other approaches, in that, it collects groups of independent vertices at a time. Certain bounds we obtain in this paper relate to some interesting questions in the theory of extremal graphs.
Resumo:
A channel router is an important design aid in the design automation of VLSI circuit layout. Many algorithms have been developed based on various wiring models with routing done on two layers. With the recent advances in VLSI process technology, it is possible to have three independent layers for interconnection. In this paper two algorithms are presented for three-layer channel routing. The first assumes a very simple wiring model. This enables the routing problem to be solved optimally in a time of O(n log n). The second algorithm is for a different wiring model and has an upper bound of O(n2) for its execution time. It uses fewer horizontal tracks than the first algorithm. For the second model the channel width is not bounded by the channel density.
Resumo:
Human growth and attained height are determined by a combination of genetic and environmental effects and in modern Western societies > 80% of the observed variation in height is determined by genetic factors. Height is a fundamental human trait that is associated with many socioeconomic and psychosocial factors and health measures, however little is known of the identity of the specific genes that influence height variation in the general population. This thesis work aimed to identify the genetic variants that influence height in the general population by genome-wide linkage analysis utilizing large family samples. The study focused on analysis of three separate sets of families consisting of: 1) 1,417 individuals from 277 Finnish families (FinnHeight), 2) 8,450 individuals from 3,817 families from Australia and Europe (EUHeight) and 3) 9,306 individuals from 3,302 families from the United States (USHeight). The most significant finding in this study was found in the Finnish family sample where we a locus in the chromosomal region 1p21 was linked to adult height. Several regions showed evidence for linkage in the Australian, European and US families with 8q21 and 15q25 being the most significant. The region on 1p21 was followed up with further studies and we were able to show that the collagen 11-alpha-1 gene (COL11A1) residing at this location was associated with adult height. This association was also confirmed in an independent Finnish population cohort (Health 2000) consisting of 6,542 individuals. From this population sample, we estimated that homozygous males and females for this gene variant were 1.1 and 0.6 cm taller than the respective controls. In this thesis work we identified a gene variant in the COL11A1 gene that influences human height, although this variant alone explains only 0.1% of height variation in the Finnish population. We also demonstrated in this study that special stratification strategies such as performing sex-limited analyses, focusing on dizygous twin pairs, analyzing ethnic groups within a population separately and utilizing homogenous populations such as the Finns can improve the statistical power of finding QTL significantly. Also, we concluded from the results of this study that even though genetic effects explain a great proportion of height variance, it is likely that there are tens or even hundreds of genes with small individual effects underlying the genetic architecture of height.
Resumo:
Many novel computer architectures like array and multiprocessors which achieve high performance through the use of concurrency exploit variations of the von Neumann model of computation. The effective utilization of the machines makes special demands on programmers and their programming languages, such as the structuring of data into vectors or the partitioning of programs into concurrent processes. In comparison, the data flow model of computation demands only that the principle of structured programming be followed. A data flow program, often represented as a data flow graph, is a program that expresses a computation by indicating the data dependencies among operators. A data flow computer is a machine designed to take advantage of concurrency in data flow graphs by executing data independent operations in parallel. In this paper, we discuss the design of a high level language (DFL: Data Flow Language) suitable for data flow computers. Some sample procedures in DFL are presented. The implementation aspects have not been discussed in detail since there are no new problems encountered. The language DFL embodies the concepts of functional programming, but in appearance closely resembles Pascal. The language is a better vehicle than the data flow graph for expressing a parallel algorithm. The compiler has been implemented on a DEC 1090 system in Pascal.
Resumo:
Schizophrenia is a severe mental disorder affecting 0.4-1% of the population worldwide. It is characterized by impairments in the perception of reality and by significant social or occupational dysfunction. The disorder is one of the major contributors to the global burden of diseases. Studies of twins, families, and adopted children point to strong genetic components for schizophrenia, but environmental factors also play a role in the pathogenesis of disease. Molecular genetic studies have identified several potential positional candidate genes. The strongest evidence for putative schizophrenia susceptibility loci relates to the genes encoding dysbindin (DTNBP1) and neuregulin (NRG1), but studies lack impressive consistency in the precise genetic regions and alleles implicated. We have studied the role of three potential candidate genes by genotyping 28 single nucleotide polymorphisms in the DNTBP1, NRG1, and AKT1 genes in a large schizophrenia family sample consisting of 441 families with 865 affected individuals from Finland. Our results do not support a major role for these genes in the pathogenesis of schizophrenia in Finland. We have previously identified a region on chromosome 5q21-34 as a susceptibility locus for schizophrenia in a Finnish family sample. Recently, two studies reported association between the γ-aminobutyric acid type A receptor cluster of genes in this region and one study showed suggestive evidence for association with another regional gene encoding clathrin interactor 1 (CLINT1, also called Epsin 4 and ENTH). To further address the significance of these genes under the linkage peak in the Finnish families, we genotyped SNPs of these genes, and observed statistically significant association of variants between GABRG2 and schizophrenia. Furthermore, these variants also seem to affect the functioning of the working memory. Fetal events and obstetric complications are associated with schizophrenia. Rh incompatibility has been implicated as a risk factor for schizophrenia in several epidemiological studies. We conducted a family-based candidate-gene study that assessed the role of maternal-fetal genotype incompatibility at the RhD locus in schizophrenia. There was significant evidence for an RhD maternal-fetal genotype incompatibility, and the risk ratio was estimated at 2.3. This is the first candidate-gene study to explicitly test for and provide evidence of a maternal-fetal genotype incompatibility mechanism in schizophrenia. In conclusion, in this thesis we found evidence that one GABA receptor subunit, GABRG2, is significantly associated with schizophrenia. Furthermore, it also seems to affect to the functioning of the working memory. In addition, an RhD maternal-fetal genotype incompatibility increases the risk of schizophrenia by two-fold.
Resumo:
A branch and bound type algorithm is presented in this paper to the problem of finding a transportation schedule which minimises the total transportation cost, where the transportation cost over each route is assumed to be a piecewice linear continuous convex function with increasing slopes. The algorithm is an extension of the work done by Balachandran and Perry, in which the transportation cost over each route is assumed to beapiecewise linear discontinuous function with decreasing slopes. A numerical example is solved illustrating the algorithm.
Resumo:
BACKGROUND: Genetic variation contributes to the risk of developing endometriosis. This review summarizes gene mapping studies in endometriosis and the prospects of finding gene pathways contributing to disease using the latest genome-wide strategies. METHODS: To identify candidate-gene association studies of endometriosis, a systematic literature search was conducted in PubMed of publications up to 1 April 2008, using the search terms 'endometriosis' plus 'allele' or 'polymorphism' or 'gene'. Papers included were those with information on both case and control selection, showed allelic and/or genotypic results for named germ-line polymorphisms and were published in the English language. RESULTS: Genetic variants in 76 genes have been examined for association, but none shows convincing evidence of replication in multiple studies. There is evidence for genetic linkage to chromosomes 7 and 10, but the genes (or variants) in these regions contributing to disease risk have yet to be identified. Genome-wide association is a powerful method that has been successful in locating genetic variants contributing to a range of common diseases. Several groups are planning these studies in endometriosis. For this to be successful, the endometriosis research community must work together to genotype sufficient cases, using clearly defined disease classifications, and conduct the necessary replication studies in several thousands of cases and controls. CONCLUSIONS: Genes with convincing evidence for association with endometriosis are likely to be identified in large genome-wide studies. This will provide a starting point for functional and biological studies to develop better diagnosis and treatment for this debilitating disease.
Resumo:
Contention-based multiple access is a crucial component of many wireless systems. Multiple-packet reception (MPR) schemes that use interference cancellation techniques to receive and decode multiple packets that arrive simultaneously are known to be very efficient. However, the MPR schemes proposed in the literature require complex receivers capable of performing advanced signal processing over significant amounts of soft undecodable information received over multiple contention steps. In this paper, we show that local channel knowledge and elementary received signal strength measurements, which are available to many receivers today, can actively facilitate multipacket reception and even simplify the interference canceling receiver¿s design. We introduce two variants of a simple algorithm called Dual Power Multiple Access (DPMA) that use local channel knowledge to limit the receive power levels to two values that facilitate successive interference cancellation. The resulting receiver structure is markedly simpler, as it needs to process only the immediate received signal without having to store and process signals received previously. Remarkably, using a set of three feedback messages, the first variant, DPMA-Lite, achieves a stable throughput of 0.6865 packets per slot. Using four possible feedback messages, the second variant, Turbo-DPMA, achieves a stable throughput of 0.793 packets per slot, which is better than all contention algorithms known to date.
Resumo:
Data flow computers are high-speed machines in which an instruction is executed as soon as all its operands are available. This paper describes the EXtended MANchester (EXMAN) data flow computer which incorporates three major extensions to the basic Manchester machine. As extensions we provide a multiple matching units scheme, an efficient, implementation of array data structure, and a facility to concurrently execute reentrant routines. A simulator for the EXMAN computer has been coded in the discrete event simulation language, SIMULA 67, on the DEC 1090 system. Performance analysis studies have been conducted on the simulated EXMAN computer to study the effectiveness of the proposed extensions. The performance experiments have been carried out using three sample problems: matrix multiplication, Bresenham's line drawing algorithm, and the polygon scan-conversion algorithm.
Resumo:
Relaxation labeling processes are a class of mechanisms that solve the problem of assigning labels to objects in a manner that is consistent with respect to some domain-specific constraints. We reformulate this using the model of a team of learning automata interacting with an environment or a high-level critic that gives noisy responses as to the consistency of a tentative labeling selected by the automata. This results in an iterative linear algorithm that is itself probabilistic. Using an explicit definition of consistency we give a complete analysis of this probabilistic relaxation process using weak convergence results for stochastic algorithms. Our model can accommodate a range of uncertainties in the compatibility functions. We prove a local convergence result and show that the point of convergence depends both on the initial labeling and the constraints. The algorithm is implementable in a highly parallel fashion.
Design and testing of stand-specific bucking instructions for use on modern cut-to-length harvesters
Resumo:
This study addresses three important issues in tree bucking optimization in the context of cut-to-length harvesting. (1) Would the fit between the log demand and log output distributions be better if the price and/or demand matrices controlling the bucking decisions on modern cut-to-length harvesters were adjusted to the unique conditions of each individual stand? (2) In what ways can we generate stand and product specific price and demand matrices? (3) What alternatives do we have to measure the fit between the log demand and log output distributions, and what would be an ideal goodness-of-fit measure? Three iterative search systems were developed for seeking stand-specific price and demand matrix sets: (1) A fuzzy logic control system for calibrating the price matrix of one log product for one stand at a time (the stand-level one-product approach); (2) a genetic algorithm system for adjusting the price matrices of one log product in parallel for several stands (the forest-level one-product approach); and (3) a genetic algorithm system for dividing the overall demand matrix of each of the several log products into stand-specific sub-demands simultaneously for several stands and products (the forest-level multi-product approach). The stem material used for testing the performance of the stand-specific price and demand matrices against that of the reference matrices was comprised of 9 155 Norway spruce (Picea abies (L.) Karst.) sawlog stems gathered by harvesters from 15 mature spruce-dominated stands in southern Finland. The reference price and demand matrices were either direct copies or slightly modified versions of those used by two Finnish sawmilling companies. Two types of stand-specific bucking matrices were compiled for each log product. One was from the harvester-collected stem profiles and the other was from the pre-harvest inventory data. Four goodness-of-fit measures were analyzed for their appropriateness in determining the similarity between the log demand and log output distributions: (1) the apportionment degree (index), (2) the chi-square statistic, (3) Laspeyres quantity index, and (4) the price-weighted apportionment degree. The study confirmed that any improvement in the fit between the log demand and log output distributions can only be realized at the expense of log volumes produced. Stand-level pre-control of price matrices was found to be advantageous, provided the control is done with perfect stem data. Forest-level pre-control of price matrices resulted in no improvement in the cumulative apportionment degree. Cutting stands under the control of stand-specific demand matrices yielded a better total fit between the demand and output matrices at the forest level than was obtained by cutting each stand with non-stand-specific reference matrices. The theoretical and experimental analyses suggest that none of the three alternative goodness-of-fit measures clearly outperforms the traditional apportionment degree measure. Keywords: harvesting, tree bucking optimization, simulation, fuzzy control, genetic algorithms, goodness-of-fit
Resumo:
Buffer zones are vegetated strip-edges of agricultural fields along watercourses. As linear habitats in agricultural ecosystems, buffer strips dominate and play a leading ecological role in many areas. This thesis focuses on the plant species diversity of the buffer zones in a Finnish agricultural landscape. The main objective of the present study is to identify the determinants of floral species diversity in arable buffer zones from local to regional levels. This study was conducted in a watershed area of a farmland landscape of southern Finland. The study area, Lepsämänjoki, is situated in the Nurmijärvi commune 30 km to the north of Helsinki, Finland. The biotope mosaics were mapped in GIS. A total of 59 buffer zones were surveyed, of which 29 buffer strips surveyed were also sampled by plot. Firstly, two diversity components (species richness and evenness) were investigated to determine whether the relationship between the two is equal and predictable. I found no correlation between species richness and evenness. The relationship between richness and evenness is unpredictable in a small-scale human-shaped ecosystem. Ordination and correlation analyses show that richness and evenness may result from different ecological processes, and thus should be considered separately. Species richness correlated negatively with phosphorus content, and species evenness correlated negatively with the ratio of organic carbon to total nitrogen in soil. The lack of a consistent pattern in the relationship between these two components may be due to site-specific variation in resource utilization by plant species. Within-habitat configuration (width, length, and area) were investigated to determine which is more effective for predicting species richness. More species per unit area increment could be obtained from widening the buffer strip than from lengthening it. The width of the strips is an effective determinant of plant species richness. The increase in species diversity with an increase in the width of buffer strips may be due to cross-sectional habitat gradients within the linear patches. This result can serve as a reference for policy makers, and has application value in agricultural management. In the framework of metacommunity theory, I found that both mass effect(connectivity) and species sorting (resource heterogeneity) were likely to explain species composition and diversity on a local and regional scale. The local and regional processes were interactively dominated by the degree to which dispersal perturbs local communities. In the lowly and intermediately connected regions, species sorting was of primary importance to explain species diversity, while the mass effect surpassed species sorting in the highly connected region. Increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities, and consequently, to lower regional diversity, while local species richness was unrelated to the habitat connectivity. Of all species found, Anthriscus sylvestris, Phalaris arundinacea, and Phleum pretense significantly responded to connectivity, and showed high abundance in the highly connected region. We suggest that these species may play a role in switching the force from local resources to regional connectivity shaping the community structure. On the landscape context level, the different responses of local species richness and evenness to landscape context were investigated. Seven landscape structural parameters served to indicate landscape context on five scales. On all scales but the smallest scales, the Shannon-Wiener diversity of land covers (H') correlated positively with the local richness. The factor (H') showed the highest correlation coefficients in species richness on the second largest scale. The edge density of arable field was the only predictor that correlated with species evenness on all scales, which showed the highest predictive power on the second smallest scale. The different predictive power of the factors on different scales showed a scaledependent relationship between the landscape context and local plant species diversity, and indicated that different ecological processes determine species richness and evenness. The local richness of species depends on a regional process on large scales, which may relate to the regional species pool, while species evenness depends on a fine- or coarse-grained farming system, which may relate to the patch quality of the habitats of field edges near the buffer strips. My results suggested some guidelines of species diversity conservation in the agricultural ecosystem. To maintain a high level of species diversity in the strips, a high level of phosphorus in strip soil should be avoided. Widening the strips is the most effective mean to improve species richness. Habitat connectivity is not always favorable to species diversity because increasing connectivity in communities containing high habitat heterogeneity can lead to the homogenization of local communities (beta diversity) and, consequently, to lower regional diversity. Overall, a synthesis of local and regional factors emerged as the model that best explain variations in plant species diversity. The studies also suggest that the effects of determinants on species diversity have a complex relationship with scale.
Resumo:
A residual-based strategy to estimate the local truncation error in a finite volume framework for steady compressible flows is proposed. This estimator, referred to as the -parameter, is derived from the imbalance arising from the use of an exact operator on the numerical solution for conservation laws. The behaviour of the residual estimator for linear and non-linear hyperbolic problems is systematically analysed. The relationship of the residual to the global error is also studied. The -parameter is used to derive a target length scale and consequently devise a suitable criterion for refinement/derefinement. This strategy, devoid of any user-defined parameters, is validated using two standard test cases involving smooth flows. A hybrid adaptive strategy based on both the error indicators and the -parameter, for flows involving shocks is also developed. Numerical studies on several compressible flow cases show that the adaptive algorithm performs excellently well in both two and three dimensions.