990 resultados para glandular degeneration


Relevância:

10.00% 10.00%

Publicador:

Resumo:

RPE65-related Leber's congenital amaurosis (LCA) is a rod-cone dystrophy whose clinical outcome is mainly attributed to the loss of rod photoreceptors followed by cone degeneration. Pathogenesis in Rpe65(-/-) mice is characterized by a slow and progressive degeneration of rods dependent on the constitutive activation of unliganded opsin. We previously reported that this opsin-mediated apoptosis of rods was dependent on Bcl-2-apoptotic pathway and Bax-induced pro-death activity. In this study, we report early initial apoptosis in the newly differentiated retina of Rpe65(-/-) mice. Apoptotic photoreceptors were identified as rods and resulted from pathological phototransduction signaling. This wave of early apoptosis triggered Bcl-2-related pathway and Bax apoptotic activity, while activation of the caspases was not induced. Following cellular stress, multiple signaling pathways are initiated which either commit cells to death or trigger pro-survival responses including autophagy. We report that Bcl-2-related early rod apoptosis was associated with the upregulation of autophagy markers including chaperone-mediated autophagy (CMA) substrate receptor LAMP-2 and lysosomal hydrolases Cathepsin S and Lysozyme. This suggests that lysosomal-mediated autophagy may be triggered in response to early rod apoptosis in Rpe65-LCA disease. These results highlight that Rpe65-related primary stress induces early signaling events, which trigger Bax-induced-apoptotic pathway and autophagy-mediated cellular response. These events may determine retinal cell fate, progression and severity of the disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Studies on large animal models are an important step to test new therapeutical strategies before human application. Considering the importance of cone function for human vision and the paucity of large animal models for cone dystrophies having an enriched cone region, we propose to develop a pig model for cone degeneration. With a lentiviral-directed transgenesis, we obtained pigs transgenic for a cone-dominant mutant gene described in a human cone dystrophy.Methods: Lentiviral vectors encoding the human double mutant GUCY2DE837D/R838S cDNA under the control of a region of the pig arrestin-3 promoter (Arr3) was produced and used for lentiviral-derived transgenesis in pigs. PCR-genotyping and southern blotting determined the genotype of pigs born after injection of the vector at the zygote stage. Retina function analysis was performed by ERG and behavioral tests at 11, 24 and 54 weeks of age. OCT and histological analyses were performed to describe the retina morphology.Results: The ratio of transgenic pigs born after lentiviral-directed transgenesis was close to 50%. Transgenic pigs with 3 to 5 transgene copies per cell clearly present a reduced photopic response from 3 months of age on. Except for one pig, which has 6 integrated transgene copies, no dramatic decrease in general mobility was observed even at 6 months of age. OCT examinations reveal no major changes in the ONL structure of the 6-months old pigs. The retina morphology was well conserved in the 2 pigs sacrificed (3 and 6 months old) except a noticeable displacement of some cone nuclei in the outer segment layer.Conclusions: Lentiviral-directed transgenesis is a rapid and straightforward method to engineer transgenic pigs. Some Arr3-GUCY2DE837D/R838S pigs show signs of retinal dysfunction but further work is needed to describe the progression of the disease in this model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In addition to differences in protein-coding gene sequences, changes in expression resulting from mutations in regulatory sequences have long been hypothesized to be responsible for phenotypic differences between species. However, unlike comparison of genome sequences, few studies, generally restricted to pairwise comparisons of closely related mammalian species, have assessed between-species differences at the transcriptome level. They reported that gene expression evolves at different rates in various organs and in a pattern that is overall consistent with neutral models of evolution. In the first part of my thesis, I investigated the evolution of gene expression in therian mammals (i.e.7 placental and marsupials), based on microarray data from human, mouse and the gray short-tailed opossum (Monodelphis domestica). In addition to autosomal genes, a special focus was given to the evolution of X-linked genes. The therian X chromosome was recently shown to be younger than previously thought and to harbor a specific gene content (e.g., genes involved in brain or reproductive functions) that is thought to have been shaped by specific sex-related evolutionary forces. Sex chromosomes derive from ordinary autosomes and their differentiation led to the degeneration of the Y chromosome (in mammals) or W chromosome (in birds). Consequently, X- or Z-linked genes differ in gene dose between males and females such that the heterogametic sex has half the X/Z gene dose compared to the ancestral state. To cope with this dosage imbalance, mammals have been reported to have evolved mechanisms of dosage compensation.¦In the first project, I could first show that transcriptomes evolve at different rates in different organs. Out of the five tissues I investigated, the testis is the most rapidly evolving organ at the gene expression level while the brain has the most conserved transcriptome. Second, my analyses revealed that mammalian gene expression evolution is compatible with a neutral model, where the rates of change in gene expression levels is linked to the efficiency of purifying selection in a given lineage, which, in turn, is determined by the long-term effective population size in that lineage. Thus, the rate of DNA sequence evolution, which could be expected to determine the rate of regulatory sequence change, does not seem to be a major determinant of the rate of gene expression evolution. Thus, most gene expression changes seem to be (slightly) deleterious. Finally, X-linked genes seem to have experienced elevated rates of gene expression change during the early stage of X evolution. To further investigate the evolution of mammalian gene expression, we generated an extensive RNA-Seq gene expression dataset for nine mammalian species and a bird. The analyses of this dataset confirmed the patterns previously observed with microarrays and helped to significantly deepen our view on gene expression evolution.¦In a specific project based on these data, I sought to assess in detail patterns of evolution of dosage compensation in amniotes. My analyses revealed the absence of male to female dosage compensation in monotremes and its presence in marsupials and, in addition, confirmed patterns previously described for placental mammals and birds. I then assessed the global level of expression of X/Z chromosomes and contrasted this with its ancestral gene expression levels estimated from orthologous autosomal genes in species with non-homologous sex chromosomes. This analysis revealed a lack of up-regulation for placental mammals, the level of expression of X-linked genes being proportional to gene dose. Interestingly, the ancestral gene expression level was at least partially restored in marsupials as well as in the heterogametic sex of monotremes and birds. Finally, I investigated alternative mechanisms of dosage compensation and found that gene duplication did not seem to be a widespread mechanism to restore the ancestral gene dose. However, I could show that placental mammals have preferentially down-regulated autosomal genes interacting with X-linked genes which underwent gene expression decrease, and thus identified a novel alternative mechanism of dosage compensation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sex chromosomes are expected to evolve suppressed recombination, which leads to degeneration of the Y and heteromorphism between the X and Y. Some sex chromosomes remain homomorphic, however, and the factors that prevent degeneration of the Y in these cases are not well understood. The homomorphic sex chromosomes of the European tree frogs (Hyla spp.) present an interesting paradox. Recombination in males has never been observed in crossing experiments, but molecular data are suggestive of occasional recombination between the X and Y. The hypothesis that these sex chromosomes recombine has not been tested statistically, however, nor has the X-Y recombination rate been estimated. Here, we use approximate Bayesian computation coupled with coalescent simulations of sex chromosomes to quantify X-Y recombination rate from existent data. We find that microsatellite data from H. arborea, H. intermedia and H. molleri support a recombination rate between X and Y that is significantly different from zero. We estimate that rate to be approximately 10(5) times smaller than that between X chromosomes. Our findings support the notion that very low recombination rate may be sufficient to maintain homomorphism in sex chromosomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Taking advantage of two transgenic lines, glast.DsRed and crx.gfp, that express fluorescent proteins in glial and photoreceptor cells respectively, we investigate the role of glast-positive glial cells (GPCs) in the survival/differentiation/proliferation of age-matched photoreceptor cells. Methods: Primary retinal cells were isolated from newborn transgenic mouse retina (glast.dsRed::crx.gfp) at postnatal day (P0/P1) and propagated in defined medium containing epidermal growth factor (EGF) and fibroblast growth factor 2 (bFGF). By flow-sorting another population of pure GPCs was isolated. Both populations were expanded and analyzed for the presence of specific retinal cell markers. Notably, the primary cell culture collected from the transgenic line glast.dsRed::crx.gfp showed a conspicuous presence of immature photoreceptors growing on top of GPCs. In order to reveal the role of such cells in the survival/differentiation/proliferation of photoreceptors we set up in vitro cultures of retina-derived cells that allowed long-term time-lapse recordings charting every cell division, death and differentiation event. To assess the regenerative potential of GPCs we challenged them with compounds mimicking retinal degeneration (NMU, NMDA, Zaprinast). Mass spectrometry (MS), immunostainings and other molecular approaches were performed to reveal adhesion molecules involved in the relationship between glial cells and photoreceptors. Results: Both primary cell lines were highly homogenous, with an elongated morphology and the majority expressed Müller glia markers (MG) such as glast, blbp, glt-1, vimentin, glutamine synthetase (GS), GFAP, cd44, mash1 and markers of reactive Müller glia such as nestin, pax6. Conversely, none of them were found positive for retinal neuron markers like tuj1, otx2, recoverin. Primary cultures of GPCs show the incapability of glial cells to give rise to photoreceptors in both wild type or degenerative environment. Furthermore, primary cultures of pure GPCs challenged with different compounds did not highlight the production of new glial cell-derived photoreceptors. Adhesion molecules involved in the contact between photoreceptors and glial cells are still under investigation. Conclusions: Primary glia cells do not give rise to photoreceptor cells in wt and degenerative conditions at least in vitro. The roles of glial cells seem to be more linked to the maintenance/proliferation of photoreceptor cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An 80-year-old male patient experienced recently diagnosed swelling of the limbal conjunctiva. In his clinical history were found cataract surgery on the right eye 3 months before, chronic open angle glaucoma effectively treated by local eye drops, treated systemic hypertension and hypercholesterolemia. On ophthalmic examination, a conjunctival mass was present in the inferior lateral conjunctival quadrant next to the limbus, with numerous vessels visible at its top. Treatment with topical corticosteroids failed to obtain regression, but decreased the local inflammatory signs. The persistence of the mass led to its surgical excision under local anesthesia. Histopathology found a subepithelial accumulation of modified collagen bundles typical of elastotic degeneration. Capillary vessels were seen in the superficial subepithelial area, attesting to the high degree of vascularization observed clinically. The final diagnosis was a pinguecula, which was not exactly located on the horizontal meridian area as it is usual.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aggregates of fetal rat brain were maintained in rotating culture for 30-40 days and were analyzed morphologically and biochemically. At 4 days in culture all cells were undifferentiated. At 26 days in vitro over 90% of all cells within the aggregates could be identified as neurons, astrocytes or oligodendrocytes. Myelinated axons and morphologically mature synapses were present at 26 days. Myelination started between 18 and 19 days in culture as determined biochemically. Myelin basic protein sulphatide synthesis and 2′,3′-cyclic nucleotide 3′-phosphohydrolase activity increased with in vitro age. The amount of myelin observed within the aggregates was much lower than observed at the corresponding age in vivo. Neurons and neuronal processes were undergoing severe degeneration in the 40-day aggregates and synaptic contacts were not maintained. There were no normal myelinated axons at 40 days although multilammellar membranes were found intra- and extracellularly. The ganglioside pattern of the aggregates were qualitatively similar to rat whole brain. Quantitatively the GM3ganglioside was elevated in comparison to whole rat brain. Our results indicate that aggregating rat brain cultures provide a useful in vitro system for the biochemical and morphological analysis of myelin formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé :Une famille souffrant d'un nouveau syndrome oculo-auriculaire, appelé syndrome de Schorderet-Munier, a été identifiée. Ce syndrome est caractérisé par une déformation du lobe de l'oreille et des anomalies ophtalmiques, notamment une microphtalmie, une cataracte, un colobome et une dégénérescence rétinienne. Le gène impliqué dans ce syndrome est NKX5-3 codant un facteur de transcription contenant un homéodomaine. Chez les patient atteints, le gène comporte une délétion de 26 nucléotides provoquant probablement l'apparition d'un codon stop précoce. Ce gène n'est exprimé que dans certains organes dont les testicules et les ganglions cervicaux supérieurs, ainsi que dans les organes touchés par ce syndrome, à savoir le pavillon de l'oreille et l'oeil, surtout lors du développement embryonnaire. Au niveau de la rétine, NKX5-3 est présent dans la couche nucléaire interne et dans la couche dè cellules ganglionnaires et est exprimé de manière polarisée selon un axe temporal > nasal et ventral > dorsal. Son expression in vitro est régulée par Spl, un facteur de transcription exprimé durant le développement de l'oeil chez la souris. NKX5-3 semble lui-même provoquer une inhibition de l'expression de SHH et de EPHA6. Ces gènes sont tous les deux impliqués à leur manière dans le guidage des axones des cellules ganglionnaires de la rétine. Pris ensemble, ces résultats nous permettent donc d'émettre une hypothèse quant à un rôle potentiel de NKX5-3 dans ce processus.Abstract :A family with a new oculo-auricular syndrome, called syndrome of Schorderet-Munier, was identified. This disease is characterised by a deformation of the ear lobule and by several ophthalmic abnormalities, like microphthalmia, cataract, coloboma and a retinal degeneration. The gene, which causes this syndrome, is NKX5-3 coding for a transcription factor contaning a homeodomain. In the affectd patients, the defect consists of a deletion of 26 nucleotides probably producing a premature stop codon. This gene is only expressed in a few organs like testis and superior cervical ganglions, as well as in organs affected by this syndrome, namely the ear pinna and the eye, mainly during embryonic development. In the retina, NKX5-3 is present in the inner nuclear layer and in the ganglion cells layer. It is expressed along a gradient ranging from the temporal retina to nasal retina and from the ventral to the dorsal part. Its in vitro expression is regulated by Spl, a transcription factor expressed during the murine eye development. NKX5-3 seems to inhibit the expression of SHH and EPHA6. These genes are both implicated, in their own way, in the axon guidance of the retinal ganglion cells. Taken together, these results allow us to make an assumption about a potential role of NKX5-3 in this process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activation of microglia is a well-documented phenomenon associated with diverse pathological conditions of the central nervous system. In order to investigate the involvement of microglial cells in the neurotoxic action of the heavy metal compound trimethyltin, three-dimensional brain cell cultures were treated during an early developmental period, using concentrations at or below the limit of cytotoxicity. Microglial cells were studied by cytochemical staining, using horseradish peroxidase-conjugated B4 isolectin (GSI-B4). In parallel, neurotoxic effects were assessed by determining the content of synaptophysin and synapsin I, both in the total homogenates and in the synaptosomal fraction of the cultures. Changes in the content of the specific growth cone protein, GAP-43, were also analyzed. It was found that low, non-cytotoxic concentrations of TMT (10(-9) to 10(-8) M) caused a significant increase in the number and/or the clustering of microglial cells. A decrease in the synaptic protein (synapsin I, synaptophysin) content was detected at 10(-8) M of TMT in synaptosomal fractions, whereas in the total homogenates, changes in synaptic proteins and GAP-43 were observed only at the cytotoxic TMT concentration (10(-6) M). Although it remains to be shown whether the microglial response is caused by direct or indirect action of TMT, the present findings show that microglial responsiveness can be detected prior to any sign of neuronal degeneration, and may serve as a sensitive indicator for heavy metal neurotoxicity in the brain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To study the combination of oligodeoxynucleotides (ODNs) intravitreous injection and saline transpalpebral iontophoresis on the delivery of ODNs to photoreceptors in the newborn rd1/rd1 mice. METHODS: Cathodal or anodal transpalpebral iontophoresis (1.43 mA/cm(2) for 5 min) was applied to eyes of postnatal day 7 (PN7) rd1/rd1 mice immediately before the intravitreous injection of ODNs. The effect of cathodal iontophoresis after ODNs injection was also evaluated. The influence of current intensity (0.5, 1.5, and 2.5 mA) was assayed with cathodal iontophoresis performed prior to ODNs injection. The duration of current-induced facilitation of ODNs delivery to photoreceptors was evaluated for 6 h following iontophoresis. One group of control eyes received cathodal iontophoresis prior to the intravitreous injection of phosphate buffered saline (PBS) or hexachlorofluorescein (Hex). The second control group received ODN or Hex intravitreous injection without iontophoresis. The penetration of fluorescent ODNs in the outer nuclear layer (ONL) was quantified by image analysis of the ONL fluorescence intensity on cryosection microphotographs. Integrity of ODN was assessed using acrylamide gel migration after its extraction from the retina of treated mice. The integrity of retinal structure, 1 and 24 h after iontophoresis, was analyzed using light and electron microscopy. RESULTS: Transpalpebral anodal or cathodal saline iontophoresis enhanced the penetration of ODNs in all retinal layers. Cathodal iontophoresis was more efficient than anodal iontophoresis in enhancing the tissue penetration of the injected ODN. Photoreceptor delivery of ODN was significantly higher when cathodal saline transpalpebral iontophoresis was applied prior than after the injection. The extent of enhanced tissue penetration decreased in parallel to the increased interval between iontophoresis application and the intravitreous injection. Current of 1.5 mA was safe and optimal for the delivery of ODNs to the ONL. One hour after iontophoresis followed by injection, ODN extracted from the retina of treated eyes remained intact. Histology and electron microscopy observations demonstrated that iontophoresis using the optimal parameters did not induce any permanent tissue alterations or structure damage. CONCLUSIONS: Saline transpalpebral iontophoresis facilitates the penetration of injected ODNs in photoreceptors for at least 3 h. This method may be considered for photoreceptor targeted gene therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The known genetic mutation causing Huntington's disease (HD) makes this disease an important model to study links between gene and brain function. An autosomal dominant family history and the availability of a sensitive and specific genetic test allow pre-clinical diagnosis many years before the onset of any typical clinical signs. This review summarizes recent magnetic resonance imaging (MRI)-based findings in HD with a focus on the requirements if imaging is to be used in treatment trials. Despite its monogenetic cause, HD presents with a range of clinical manifestations, not explained by variation in the number of CAG repeats in the affected population. Neuroimaging studies have revealed a complex pattern of structural and functional changes affecting widespread cortical and subcortical regions far beyond the confines of the striatal degeneration that characterizes this disorder. Besides striatal dysfunction, functional imaging studies have reported a variable pattern of increased and decreased activation in cortical regions in both pre-clinical and clinically manifest HD-gene mutation carriers. Beyond regional brain activation changes, evidence from functional and diffusion-weighted MRI further suggests disrupted connectivity between corticocortical and corticostriatal areas. However, substantial inconsistencies with respect to structural and functional changes have been reported in a number of studies. Possible explanations include methodological factors and differences in study samples. There may also be biological explanations but these are poorly characterized and understood at present. Additional insights into this phenotypic variability derived from study of mouse models are presented to explore this phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amyotrophic lateral sclerosis (ALS) is predominantly characterized by a progressive loss of motor function. While autonomic dysfunction has been described in ALS, little is known about the prevalence of lower urinary tract symptoms (LUTS) and intestinal dysfunction. We investigated disease severity, LUTS and intestinal dysfunction in 43 patients with ALS attending our outpatient department applying the ALS functional rating scale, the International Consultation on Incontinence Modular Questionnaire, the Urinary Distress Inventory and the Cleveland Clinic Incontinence Score. Results were compared to the German population of a cross-sectional study assessing LUTS in the healthy population, the EPIC study. Results showed that urinary incontinence was increased in patients with ALS aged ≥ 60 years compared to the EPIC cohort (female: 50%/19% (ALS/EPIC), p = 0.026; male: 36%/11% (ALS/EPIC), p = 0.002). No difference was seen at 40-59 years of age. Urge incontinence was the predominant presentation (73% of symptoms). A high symptom burden was stated (ICIQ-SF quality of life subscore 5.5/10). Intake of muscle relaxants and anticholinergics was associated with both urinary incontinence and severity of symptoms. Furthermore, a high prevalence of constipation (46%), but not stool incontinence (9%), was noted. In conclusion, the increased prevalence of urge incontinence and high symptom burden imply that in patients with ALS, LUTS should be increasingly investigated for.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of human immunoglobulins (Ig) in neuronal cytoskeleton stability was studied in vitro. Here we show that human Ig and Fc fragments stimulate animal and human microtubule assembly by binding to microtubules via tau isoforms. In presence of Ig, microtubules show increased aggregation, twisting and rigidity. Non-immune Ig and Fc fragments promote microtubule assembly in temperature-dependent manner and stabilize microtubules at a molecular ratio of 1 Ig per 4 tubulin dimers. These in vitro data provide an experimental support for an immuno-mediated modulation of the cytoskeleton. In conjunction with previous neuropathological data, they suggest that Ig could participate in early stages of neurodegeneration by affecting the microtubule stability in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In human pathologies, therapeutic treatments are often limited by the lack of selectivity of drugs and their elevated effective concentrations. Targeting these agents to a defined tissue could enhance their selectivity and then diminish their side effects when compared to drugs that accumulate in the entire body. Targeting could also improve treatment efficiency by allowing a localized high concentration of the agents. Based on the different behaviors and patterns of expression between diseased and normal cells, strategies for targeting can be explored. For example, receptors, proteases or trans-membrane carriers could be different or differently expressed. Many therapeutic procedures rely on this fact, including photodynamic therapy (PDT). PDT is already used in the treatment of some cancers, of inflammatory diseases and others diseases such as age-related macular degeneration or acne. PDT relies on the activation of a photosensitizer (PS) by visible light which results in the production of cytotoxic reactive oxygen species. In PDT, the general distribution of PS to the whole body leads to generalized photosensitization and poor acceptance of treatments by patients. One way to avoid these effects is to improve the targeting of PSs to diseased tissues using modification of PS with peptides or proteins that will target specific receptors or enzymes. PSs could also be functionalized with non-proteic ligands such as organometalics to achieve targeted and/or combined therapies. Alternatively, PSs could be encapsulated in nanoparticles bearing targeting agents which will decrease concentration of free circulating PS and improve photodynamic efficiency. These different approaches will be discussed in the present review with an emphasis on the use of peptides and proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cone photoreceptors mediate visual acuity under daylight conditions, so loss of cone-mediated central vision of course dramatically affects the quality of life of patients suffering from retinal degeneration. Therefore, promoting cone survival has become the goal of many ocular therapies and defining the stage of degeneration that still allows cell rescue is of prime importance. Using the Rpe65(R91W/R91W) mouse, which carries a mutation in the Rpe65 gene leading to progressive photoreceptor degeneration in both patients and mice, we defined stages of retinal degeneration that still allow cone rescue. We evaluated the therapeutic window within which cones can be rescued, using a subretinal injection of a lentiviral vector driving expression of RPE65 in the Rpe65(R91W/R91W) mice. Surprisingly, when applied to adult mice (1 month) this treatment not only stalls or slows cone degeneration but, actually, induces cone-specific protein expression that was previously absent. Before the intervention only part of the cones (40% of the number found in wild-type animals) in the Rpe65(R91W/R91W) mice expressed cone transducin (GNAT2); this fraction increased to 64% after treatment. Correct S-opsin localization is also recovered in the transduced region. In consequence these results represent an extended therapeutic window compared to the Rpe65(-/-) mice, implying that patients suffering from missense mutations might also benefit from a prolonged therapeutic window. Moreover, cones are not only rescued during the course of the degeneration, but can actually recover their initial status, meaning that a proportion of altered cones in chromophore deficiency-related disease can be rehabilitated even though they are severely affected.