916 resultados para geographic variations
Resumo:
BACKGROUND: Clustering ventricular arrhythmias are the consequence of acute ventricular electrical instability and represent a challenge in the management of the growing number of patients with an implantable cardioverter-defibrillator (ICD). Triggering factors can rarely be identified. OBJECTIVES: Several studies have revealed seasonal variations in the frequency of cardiovascular events and life-threatening arrhythmias, and we sought to establish whether seasonal factors may exacerbate ventricular electrical instability leading to arrhythmia clusters and electrical storm. METHODS: Two hundred and fourteen consecutive defibrillator recipients were followed-up during 3.3 +/- 2.2 years. Arrhythmia cluster was defined as the occurrence of three or more arrhythmic events triggering appropriate defibrillator therapies within 2 weeks. Time intervals between two clusters were calculated for each month and each season, and were compared using Kruskal-Wallis test and Wilcoxon-Mann-Whitney test with Bonferroni adjustment. RESULTS: During a follow-up of 698 patient years, 98 arrhythmia clusters were observed in 51 patients; clustering ventricular arrhythmias were associated with temporal variables; they occurred more frequently in the winter and spring months than during the summer and fall. Accordingly, the time intervals between two clusters were significantly shorter during winter and spring (median and 95% CI): winter 16 (5-19), spring 11.5 (7-25), summer 34.5 (15-55), fall 50.5 (19-65), P = 0.0041. CONCLUSION: There are important seasonal variations in the incidence of arrhythmia clusters in ICD recipients. Whether these variations are related to environmental factors, change in physical activity, or psychological factors requires further study.
Resumo:
PURPOSE: To test the hypothesis that the extension of areas with increased fundus autofluorescence (FAF) outside atrophic patches correlates with the rate of spread of geographic atrophy (GA) over time in eyes with age-related macular degeneration (AMD). METHODS: The database of the multicenter longitudinal natural history Fundus Autofluorescence in AMD (FAM) Study was reviewed for patients with GA recruited through the end of August 2003, with follow-up examinations within at least 1 year. Only eyes with sufficient image quality and with diffuse patterns of increased FAF surrounding atrophy were chosen. In standardized digital FAF images (excitation, 488 nm; emission, >500 nm), total size and spread of GA was measured. The convex hull (CH) of increased FAF as the minimum polygon encompassing the entire area of increased FAF surrounding the central atrophic patches was quantified at baseline. Statistical analysis was performed with the Spearman's rank correlation coefficient (rho). RESULTS: Thirty-nine eyes of 32 patients were included (median age, 75.0 years; interquartile range [IQR], 67.8-78.9); median follow-up, 1.87 years; IQR, 1.43-3.37). At baseline, the median total size of atrophy was 7.04 mm2 (IQR, 4.20-9.88). The median size of the CH was 21.47 mm2 (IQR, 15.19-28.26). The median rate of GA progression was 1.72 mm2 per year (IQR, 1.10-2.83). The area of increased FAF around the atrophy (difference between the CH and the total GA size at baseline) showed a positive correlation with GA enlargement over time (rho=0.60; P=0.0002). CONCLUSIONS: FAF characteristics that are not identified by fundus photography or fluorescein angiography may serve as a prognostic determinant in advanced atrophic AMD. As the FAF signal originates from lipofuscin (LF) in postmitotic RPE cells and since increased FAF indicates excessive LF accumulation, these findings would underscore the pathophysiological role of RPE-LF in AMD pathogenesis.
Resumo:
This chapter reviews the history of study and the current status of Mid-Holocene climatic and cultural change in the South Central Andes, which host a wide range of different habitats from Pacific coastal areas up to extremely harsh cold and dry environments of the high mountain plateau, the altiplano or the puna. Paleoenvironmental information reveals high amplitude and rapid changes in effective moisture during the Holocene period and, consequently, dramatically changing environmental conditions. Therefore, this area is suitable to study the response of hunting and gathering societies to environmental changes, because the smallest variations in the climatic conditions have large impacts on resources and the living space of humans. This chapter analyzes environmental and paleoclimatic information from lake sediments, ice cores, pollen profiles, and geomorphic processes and relates these with the cultural and geographic settlement patterns of human occupation in the different habitats in the area of southern Peru, southwest Bolivia, northwest Argentina, and north Chile and puts in perspective of the early and late Holocene to present a representative range of environmental and cultural changes. It has been found that the largest changes took place around 9000 cal yr BP when the humid early Holocene conditions were replaced by extremely arid but highly variable climatic conditions. These resulted in a marked decrease of human occupation, “ecological refuges,” increased mobility, and an orientation toward habitats with relatively stable resources (such as the coast, the puna seca, and “ecological refuges”).