996 resultados para genetic procedures
Resumo:
During the 1950s and 1960s, F.J.H. Mackereth developed and published plans for a series of pneumatic samplers for lake sediments. Unfortunately, as the equipment was continually evolving during ensuing research, no user manuals, beyond the original publication, had been produced. Over the last few years there have been a few potentially very serious accidents with the 1-metre corer, which has prompted the authors to carry out a risk assessment. This highlighted two weaknesses in the design and its later developments. They can be corrected simply by checking for screw threads that may have been added to the exhaust port on the mini-corer, and by changing the operating procedure. An A4 nine-page user manual is now available from the authors. A small charge ( pound sterling 10 in 1998) will be made to cover handling costs and postage.
Resumo:
Several different methods have been employed in the study of voltage-gated ion channels. Electrophysiological studies on excitable cells in vertebrates and molluscs have shown that many different voltage-gated potassium (K+) channels and sodium channels may coexist in the same organism. Parallel genetic studies in Drosophila have identified mutations in several genes that alter the properties of specific subsets of physiologically identified ion channels. Chapter 2 describes molecular studies that identify two Drosophila homologs of vertebrate sodium-channel genes. Mutations in one of these Drosophila sodium-channel genes are shown to be responsible for the temperature-dependent paralysis of a behavioural mutant parats. Evolutionary arguments, based on the partial sequences of the two Drosophila genes, suggest that subfamilies of voltage-gated sodium channels in vertebrates remain to be identified.
In Drosophila, diverse voltage-gated K+ channels arise from alternatively spliced mRNAs generated at the Shaker locus. Chapter 3 and the Appendices describe the isolation and characterization of several human K+-channel genes, similar in sequence to Shaker. Each of these human genes has a highly conserved homolog in rodents; thus, this K+-channel gene family probably diversified prior to the mammalian radiation. Functional K+ channels encoded by these genes have been expressed in Xenopus oocytes and their properties have been analyzed by electrophysiological methods. These studies demonstrate that both transient and noninactivating voltage-gated K+ channels may be encoded by mammalian genes closely related to Shaker. In addition, results presented in Appendix 3 clearly demonstrate that independent gene products from two K+-channel genes may efficiently co-assemble into heterooligomeric K+ channels with properties distinct from either homomultimeric channel. This finding suggests yet another molecular mechanism for the generation of K+-channel diversity.
Resumo:
Nas últimas décadas, teorias têm sido formuladas para interpretar o comportamento de solos não saturados e estas têm se mostrado coerentes com resultados experimentais. Paralelamente, várias técnicas de campo e de laboratório têm sido desenvolvidas. No entanto, a determinação experimental dos parâmetros dos solos não saturados é cara, morosa, exige equipamentos especiais e técnicos experientes. Como resultado, essas teorias têm aplicação limitada a pesquisas acadêmicas e são pouco utilizados na prática da engenharia. Para superar este problema, vários pesquisadores propuseram equações para representar matematicamente o comportamento de solos não saturados. Estas proposições são baseadas em índices físicos, caracterização do solo, em ensaios convencionais ou simplesmente em ajustes de curvas. A relação entre a umidade e a sucção matricial, convencionalmente denominada curva característica de sucção do solo (SWCC) é também uma ferramenta útil na previsão do comportamento de engenharia de solos não saturados. Existem muitas equações para representar matematicamente a SWCC. Algumas são baseadas no pressuposto de que sua forma está diretamente relacionada com a distribuição dos poros e, portanto, com a granulometria. Nestas proposições, os parâmetros são calibrados pelo ajuste da curva de dados experimentais. Outros métodos supõem que a curva pode ser estimada diretamente a partir de propriedades físicas dos solos. Estas propostas são simples e conveniente para a utilização prática, mas são substancialmente incorretas, uma vez que ignoram a influência do teor de umidade, nível de tensões, estrutura do solo e mineralogia. Como resultado, a maioria tem sucesso limitado, dependendo do tipo de solo. Algumas tentativas têm sido feitas para prever a variação da resistência ao cisalhamento com relação a sucção matricial. Estes procedimentos usam, como uma ferramenta, direta ou indiretamente, a SWCC em conjunto com os parâmetros efetivos de resistência c e . Este trabalho discute a aplicabilidade de três equações para previsão da SWCC (Gardner, 1958; van Genuchten, 1980; Fredlund; Xing, 1994) para vinte e quatro amostras de solos residuais brasileiros. A adequação do uso da curva característica normalizada, proposta por Camapum de Carvalho e Leroueil (2004), também foi investigada. Os parâmetros dos modelos foram determinados por ajuste de curva, utilizando técnicas de problema inverso; dois métodos foram usados: algoritmo genético (AG) e Levenberq-Marquardt. Vários parâmetros que influênciam o comportamento da SWCC são discutidos. A relação entre a sucção matricial e resistência ao cisalhamento foi avaliada através de ajuste de curva utilizando as equações propostas por Öberg (1995); Sällfors (1997), Vanapalli et al., (1996), Vilar (2007); Futai (2002); oito resultados experimentais foram analisados. Os vários parâmetros que influênciam a forma da SWCC e a parcela não saturadas da resistência ao cisalhamento são discutidos.
Resumo:
Hopanoids are a class of sterol-like lipids produced by select bacteria. Their preservation in the rock record for billions of years as fossilized hopanes lends them geological significance. Much of the structural diversity present in this class of molecules, which likely underpins important biological functions, is lost during fossilization. Yet, one type of modification that persists during preservation is methylation at C-2. The resulting 2-methylhopanoids are prominent molecular fossils and have an intriguing pattern over time, exhibiting increases in abundance associated with Ocean Anoxic Events during the Phanerozoic. This thesis uses diverse methods to address what the presence of 2-methylhopanes tells us about the microbial life and environmental conditions of their ancient depositional settings. Through an environmental survey of hpnP, the gene encoding the C-2 hopanoid methylase, we found that many different taxa are capable of producing 2-methylhopanoids in more diverse modern environments than expected. This study also revealed that hpnP is significantly overrepresented in organisms that are plant symbionts, in environments associated with plants, and with metabolisms that support plant-microbe interactions; collectively, these correlations provide a clue about the biological importance of 2-methylhopanoids. Phylogenetic reconstruction of the evolutionary history of hpnP revealed that 2-methylhopanoid production arose in the Alphaproteobacteria, indicating that the origin of these molecules is younger than originally thought. Additionally, we took genetic approach to understand the role of 2-methylhopanoids in Cyanobacteria using the filamentous symbiotic Nostoc punctiforme. We found that hopanoids likely aid in rigidifying the cell membrane but do not appear to provide resistance to osmotic or outer membrane stressors, as has been shown in other organisms. The work presented in this thesis supports previous findings that 2-methylhopanoids are not biomarkers for oxygenic photosynthesis and provides new insights by defining their distribution in modern environments, identifying their evolutionary origin, and investigating their role in Cyanobacteria. These efforts in modern settings aid the formation of a robust interpretation of 2-methylhopanes in the rock record.
Resumo:
Computation technology has dramatically changed the world around us; you can hardly find an area where cell phones have not saturated the market, yet there is a significant lack of breakthroughs in the development to integrate the computer with biological environments. This is largely the result of the incompatibility of the materials used in both environments; biological environments and experiments tend to need aqueous environments. To help aid in these development chemists, engineers, physicists and biologists have begun to develop microfluidics to help bridge this divide. Unfortunately, the microfluidic devices required large external support equipment to run the device. This thesis presents a series of several microfluidic methods that can help integrate engineering and biology by exploiting nanotechnology to help push the field of microfluidics back to its intended purpose, small integrated biological and electrical devices. I demonstrate this goal by developing different methods and devices to (1) separate membrane bound proteins with the use of microfluidics, (2) use optical technology to make fiber optic cables into protein sensors, (3) generate new fluidic devices using semiconductor material to manipulate single cells, and (4) develop a new genetic microfluidic based diagnostic assay that works with current PCR methodology to provide faster and cheaper results. All of these methods and systems can be used as components to build a self-contained biomedical device.
Resumo:
Techniques are described for mounting and visualizing biological macromolecules for high resolution electron microscopy. Standard techniques are included in a discussion of new methods designed to provide the highest structural resolution. Methods are also discussed for handling samples on the grid, for making accurate size measurements at the 20 Å level, and for photographically enhancing image contrast.
The application of these techniques to the study of the binding of DNA polymerase to DNA is described. It is shown that the electron micrographs of this material are in agreement with the model proposed by Dr. Arthur Kornberg. A model is described which locates several active sites on the enzyme.
The chromosomal material of the protozoan tetrahymena has been isolated and characterized by biochemical techniques and by electron microscopy. This material is shown to be typical of chromatin of higher creatures.
Comparison with other chromatins discloses that the genome of tetrahymena is highly template active and has a relatively simple genetic construction.
High resolution electron microscope procedures developed in this work have been combined with standard biochemical techniques to give a comprehensive picture of the structure of interphase chromosome fibers. The distribution of the chromosomal proteins along its DNA is discussed.
Resumo:
Genetic engineering now makes possible the insertion of DNA from many organisms into other prokaryotic, eukaryotic and viral hosts. This technology has been used to construct a variety of such genetically engineered microorganisms (GEMs). The possibility of accidental or deliberate release of GEMs into the natural environment has recently raised much public concern. The prospect of deliberate release of these microorganisms has prompted an increased need to understand the processes of survival, expression, transfer and rearrangement of recombinant DNA molecules in microbial communities. The methodology which is being developed to investigate these processes will greatly enhance our ability to study microbial population ecology.
Resumo:
Part I. Complexes of Biological Bases and Oligonucleotides with RNA
The physical nature of complexes of several biological bases and oligonucleotides with single-stranded ribonucleic acids have been studied by high resolution proton magnetic resonance spectroscopy. The importance of various forces in the stabilization of these complexes is also discussed.
Previous work has shown that purine forms an intercalated complex with single-stranded nucleic acids. This complex formation led to severe and stereospecific broadening of the purine resonances. From the field dependence of the linewidths, T1 measurements of the purine protons and nuclear Overhauser enhancement experiments, the mechanism for the line broadening was ascertained to be dipole-dipole interactions between the purine protons and the ribose protons of the nucleic acid.
The interactions of ethidium bromide (EB) with several RNA residues have been studied. EB forms vertically stacked aggregates with itself as well as with uridine, 3'-uridine monophosphate and 5'-uridine monophosphate and forms an intercalated complex with uridylyl (3' → 5') uridine and polyuridylic acid (poly U). The geometry of EB in the intercalated complex has also been determined.
The effect of chain length of oligo-A-nucleotides on their mode of interaction with poly U in D20 at neutral pD have also been studied. Below room temperatures, ApA and ApApA form a rigid triple-stranded complex involving a stoichiometry of one adenine to two uracil bases, presumably via specific adenine-uracil base pairing and cooperative base stacking of the adenine bases. While no evidence was obtained for the interaction of ApA with poly U above room temperature, ApApA exhibited complex formation of a 1:1 nature with poly U by forming Watson-Crick base pairs. The thermodynamics of these systems are discussed.
Part II. Template Recognition and the Degeneracy of the Genetic Code
The interaction of ApApG and poly U was studied as a model system for the codon-anticodon interaction of tRNA and mRNA in vivo. ApApG was shown to interact with poly U below ~20°C. The interaction was of a 1:1 nature which exhibited the Hoogsteen bonding scheme. The three bases of ApApG are in an anti conformation and the guanosine base appears to be in the lactim tautomeric form in the complex.
Due to the inadequacies of previous models for the degeneracy of the genetic code in explaining the observed interactions of ApApG with poly U, the "tautomeric doublet" model is proposed as a possible explanation of the degenerate interactions of tRNA with mRNA during protein synthesis in vivo.
Resumo:
Adapting a test between cultures or languages requires taking into account legal, linguistic, metric, and use-related considerations. Significantly more attention has been paid to the methodological aspects involved in the study of metric equivalence than to judgmental-analytical procedures prior to the empirical confirmation stage. However, considering the latter is crucial in the adaptation process. Along these lines, this paper seeks to describe and focus on the relevance of the previous stages, thereby offering a systematization process that comprises ten sections. This approach contributes to ensuring the construction of a test adapted and equivalent in as much as possible to the original. This process is exemplified by means of a Spanish language adaptation of a cognitive test originally designed in Portuguese for the Portuguese population, the Reasoning Test Battery. Copyright (C) 2013, Konrad Lorenz University Foundation. Published by Elsevier Espana, S.L.U.
Resumo:
Background: In the present study we have assessed whether the Carpathian Mountains represent a genetic barrier in East Europe. Therefore, we have analyzed the mtDNA of 128 native individuals of Romania: 62 of them from the North of Romania, and 66 from South Romania. Results: We have analyzed their mtDNA variability in the context of other European and Near Eastern populations through multivariate analyses. The results show that regarding the mtDNA haplogroup and haplotype distributions the Romanian groups living outside the Carpathian range (South Romania) displayed some degree of genetic differentiation compared to those living within the Carpahian range (North Romania). Conclusion: The main differentiation between the mtDNA variability of the groups from North and South Romania can be attributed to the demographic movements from East to West (prehistoric or historic) that differently affected in these regions, suggesting that the Carpathian mountain range represents a weak genetic barrier in South-East Europe.
Resumo:
Random Amplified Polymorphic DNA (RAPD) markers and cytochrome b (Cyt-b) gene sequences were utilized to fingerprint and construct phylogenetic relationships among four species of mackerel commonly found in the Straits of Malacca namely Rastrelliger kanagurta, R. brachysoma, Decapterus maruadsi and D. russelli. The UPGMA dendogram and genetic distance clearly showed that the individuals clustered into their own genus and species except for the Decapterus. These results were also supported by partial mtDNA cytochrome b gene sequences (279 bp) which found monotypic sequence for all Decapterus studied. Cytochrome b sequence phylogeny generated through Neighbor Joining (NJ) method was congruent with RAPD data. Results showed clear discrimination between both genera with average nucleotide divergence about 25.43%. This marker also demonstrated R. brachysoma and R. kanagurta as distinct species separated with average nucleotide divergence about 2.76%. However, based on BLAST analysis, this study indicated that the fish initially identified as D. maruadsi was actually D. russelli. The results highlighted the importance of genetic analysis for taxonomic validation, in addition to morphological traits.