954 resultados para functional complementation of yeast mutant


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grazing ungulates play a key role in many ecosystems worldwide and can form diverse assemblages, such as in African savannahs. In many of these ecosystems, present-day ungulate communities are impoverished subsets of once diverse assemblages. While we know that excluding all ungulates from grasslands can exert major effects on both the structure and composition of the vegetation, how different individual ungulate species may have contrasting effects on grassland communities remains poorly understood. Here, we performed a long-term ‘Russian doll’ grazing exclosure experiment in an African savannah to test for the effects of different size classes of grazers on grassland structure and composition. At five sites, grazer species of decreasing size class (ranging from white rhino to scrub hare) were excluded using four fence types, to experimentally create different realized grazer assemblages. The vegetation structure and the grass functional community composition were characterized in 6 different years over a 10-year period. Additionally, animal footprints were counted to quantify the abundance of different ungulate species in each treatment. We found that while vegetation height was mostly driven by total grazing pressure of all species together, ungulate community composition best explained the functional community composition of grasses. In the short term, smaller ungulate species (‘mesoherbivores’) had strongest effects on vegetation composition, by shifting communities towards dominance by species with low specific leaf area and low nutritional value. In the long term, large grazers had stronger but similar effects on the functional composition of the system. Surprisingly, the largest ‘mega-herbivore’, the white rhinoceros, did not have strong effects on the vegetation structure or composition. Synthesis. Our results support the idea that different size classes of grazers have varying effects on the functional composition of grassland plant communities. Therefore, the worldwide decline in the diversity of ungulate species is expected to have (had) major impacts on community composition and functioning of grassland ecosystems, even if total grazing pressure has remained constant, for example, due to replacement by livestock.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the current model for bacterial cell division, the FtsZ protein forms a ring that marks the division plane, creating a cytoskeletal framework for the subsequent action of other essential division proteins such as FtsA and ZipA. The putative protein complex ultimately generates the division septum. The essential cell division protein FtsZ is a functional and structural homolog of eukaryotic tubulin, and like tubulin, FtsZ hydrolyzes GTP and self-assembles into protein filaments in a strictly GTP-dependent manner. FtsA shares sequence similarity with members of the ATPase superfamily that include actin, but its actual function remains unknown. To test the division model and elucidate functions of the division proteins, this dissertation primarily focuses on the analysis of FtsZ and FtsA in Escherichia coli. ^ By tagging with green fluorescent protein, we first demonstrated that FtsA also exhibits a ring-like structure at the potential division site. The localization of FtsA was dependent on functional FtsZ, suggesting that FtsA is recruited to the septum by the FtsZ ring. In support of this idea, we showed that FtsA and FtsZ directly interact. Using a novel E. coli in situ assay, we found that the FtsA-FtsZ interaction appears to be species-specific, although an interspecies interaction could occur between FtsA and FtsZ proteins from two closely related organisms. In addition, mutagenesis of FtsA revealed that no single domain is solely responsible for its septal localization or interaction with FtsZ. To explore the function of FtsA, we purified FtsA protein and demonstrated that it has ATPase activity. Furthermore, purified FtsA stimulates disassembly of FtsZ polymers in a sedimentation assay but does not affect GTP hydrolysis of FtsZ. This result suggests that in the cell, FtsA may function similarly in regulating dynamic instability of the FtsZ ring during the cell division process. ^ To elucidate the structure-function relationship of FtsZ, we carried out thorough genetic and functional analyses of the mutagenized FtsZ derivatives. Our results indicate that the conserved N-terminal domain of FtsZ is necessary and sufficient for FtsZ self-assembly and localization. Moreover, we discovered a critical role for an extreme C-terminal domain of FtsZ that consists of only 12 residues. Truncated FtsZ derivatives lacking this domain, though able to polymerize and localize, are defective in ring formation in vivo as well as interaction with FtsA and ZipA. Alanine scanning mutagenesis of this region pinpointed at least five residues necessary for the function of FtsZ. Studies of protein levels and protein-protein interactions suggested that these residues may be involved in regulating protein stability and/or FtsZ-FtsA interactions. Interestingly, two of the point mutants exhibited dominant-negative phenotypes. ^ In summary, results from this thesis work have provided additional support for the division machinery model and will contribute to a better understanding of the coordinate functions of FtsA and FtsZ in the cell division process. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostate cancer remains the second leading cause of male cancer deaths in the United States, yet the molecular mechanisms underlying this disease remain largely unknown. Cytogenetic and molecular analyses of prostate tumors suggest a consistent association with the loss of chromosome 10. Previously, we have defined a novel tumor suppressor locus PAC-1 within chromosome 10pter-q11. Introduction of the short arm of chromosome 10 into a prostatic adenocarcinoma cell line PC-3H resulted in dramatic tumor suppression and restoration of a programmed cell death pathway. Using a combined approach of comparative genomic hybridization and microsatellite analysis of PC-3H, I have identified a region of hemizygosity within 10p12-p15. This region has been shown to be involved in frequent loss of heterozygosity in gliomas and melanoma. To functionally dissect the region within chromosome 10p containing PAC-1, we developed a strategy of serial microcell fusion, a technique that allows the transfer of defined fragments of chromosome 10p into PC-3H. Serial microcell fusion was used to transfer defined 10p fragments into a mouse A9 fibrosarcoma cell line. Once characterized by FISH and microsatellite analyses, the 10p fragments were subsequently transferred into PC-3H to generate a panel of microcell hybrid clones containing overlapping deletions of chromosome 10p. In vivo and microsatellite analyses of these PC hybrids identified a small chromosome 10p fragment (an estimated 31 Mb in size inclusive of the centromere) that when transferred into the PC-3H background, resulted in significant tumor suppression and limited a region of functional tumor suppressor activity to chromosome 10p12.31-q11. This region coincides with a region of LOH demonstrated in prostate cancer. These studies demonstrate the utility of this approach as a powerful tool to limit regions of functional tumor suppressor activity. Furthermore, these data used in conjunction with data generated by the Human Genome Project lent a focused approach to identify candidate tumor suppressor genes involved in prostate cancer. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comparison of gene expressing profiles between gliomas with different grades revealed frequent overexpression of insulin-like growth factor binding protein 2 (IGFBP2) in glioblastomas (GBM), in which uncontrolled cell proliferation, angiogenesis, invasion and anti-apoptosis are hallmarks. Using the glia-specific gene transfer transgenic mouse and the stable LN229(BP2) GBM cell lines, we found that IGFBP2 by itself cannot transform cells in vitro and in vivo. IGFBP2 had growth inhibitory effects on mouse primary neural progenitors, but overexpression of IGFBP2 had no effect on GBM cells. ^ Although IGFBP2 does not initiate gliomagenesis, using tissue array technology, we observed strong correlation between IGFBP2 overexpression and VEGF up-regulation in human diffuse gliomas. Furthermore, overexpression of IGFBP2 in GBM cells not only enhanced VEGF expression but also increased the malignant potential of U87 MG cells in our angiogenesis xenograft animal model. ^ In parallel to these studies, using established stable SNB19 GBM cells that overexpress IGFBP2, we found that IGFBP2 significantly increased invasion by induction of matrix metalloproteinase-2 (MMP-2) as well as other invasion related genes, providing evidence that IGFBP2 contributes to glioma progression in part by enhancing MMP-2 gene transcription and in turn tumor cell invasion. ^ Finally, we found that primary filial cells infected with an anti-sense IGFBP2 construct have markedly increased sensitivity to γ irradiation and reduced Akt activation. On the other hand, SNB19(BP2) stable lines have consistently increased levels of Akt and NFkB activation, suggesting that one possible mechanism for anti-apoptosic function of IGFBP2 is through the activation of Akt and NFkB. Beside this, what is especially interesting is the finding that Akt protein was cleaved and inactivated during apoptosis by caspases, and IGFBP2 can prevent Akt cleavage, revealing another possible mechanism through it IGFBP2 exhibit strong antiapoptotic effects. Our data showed that IGFBP2 is a specific substrate for caspase-3, raising the possibility that IGFBP2 may inhibit apoptosis by a suicide mechanism. ^ In summary, using cellular, genomics, and molecular approaches, this thesis documented the potential roles of IGFBP2 in glioma progression. Our findings shed light on an important biological aspect of glioma progression and may provide new insights useful for the design of novel mechanism-based therapies for GBM. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is widely acknowledged in theoretical and empirical literature that social relationships, comprising of structural measures (social networks) and functional measures (perceived social support) have an undeniable effect on health outcomes. However, the actual mechanism of this effect has yet to be clearly understood or explicated. In addition, comorbidity is found to adversely affect social relationships and health related quality of life (a valued outcome measure in cancer patients and survivors). ^ This cross sectional study uses selected baseline data (N=3088) from the Women's Healthy Eating and Living (WHEL) study. Lisrel 8.72 was used for the latent variable structural equation modeling. Due to the ordinal nature of the data, Weighted Least Squares (WLS) method of estimation using Asymptotic Distribution Free covariance matrices was chosen for this analysis. The primary exogenous predictor variables are Social Networks and Comorbidity; Perceived Social Support is the endogenous predictor variable. Three dimensions of HRQoL, physical, mental and satisfaction with current quality of life were the outcome variables. ^ This study hypothesizes and tests the mechanism and pathways between comorbidity, social relationships and HRQoL using latent variable structural equation modeling. After testing the measurement models of social networks and perceived social support, a structural model hypothesizing associations between the latent exogenous and endogenous variables was tested. The results of the study after listwise deletion (N=2131) mostly confirmed the hypothesized relationships (TLI, CFI >0.95, RMSEA = 0.05, p=0.15). Comorbidity was adversely associated with all three HRQoL outcomes. Strong ties were negatively associated with perceived social support; social network had a strong positive association with perceived social support, which served as a mediator between social networks and HRQoL. Mental health quality of life was the most adversely affected by the predictor variables. ^ This study is a preliminary look at the integration of structural and functional measures of social relationships, comorbidity and three HRQoL indicators using LVSEM. Developing stronger social networks and forming supportive relationships is beneficial for health outcomes such as HRQoL of cancer survivors. Thus, the medical community treating cancer survivors as well as the survivor's social networks need to be informed and cognizant of these possible relationships. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammalian cells express 7 β-tubulin isotypes in a tissue specific manner. This has long fueled the speculation that different isotypes carry out different functions. To provide direct evidence for their functional significance, class III, IVa, and VI β-tubulin cDNAs were cloned into a tetracycline regulated expression vector and stably transfected Chinese hamster ovary cell lines expressing different levels of ectopic β-tubulin were compared for effects on microtubule organization, microtubule assembly and sensitivity to antimitotic drugs. It was found that all three isotypes coassembled with endogenous β-tubulin. βVI expression caused distinct microtubule rearrangements including microtubule dissociation from the centrosome and accumulation at the cell periphery; whereas expression of βIII and βVIa caused no observable changes in the interphase microtubule network. Overexpression of all 3 isotypes caused spindle malformation and mitotic defects. Both βIII and βIVa disrupted microtubule assembly in proportion to their abundance and thereby conferred supersensitivity to microtubule depolymerizing drugs. In contrast, βVI stabilized microtubules at low stoichiometry and thus conferred resistance to many microtubule destabilizing drugs but not vinblastine. The 3 isotypes caused differing responses to microtubule stabilizing drugs. Expression of βIII conferred paclitaxel resistance while βVI did not. Low expression of βIVa caused supersensitivity to paclitaxel, whereas higher expression resulted in the loss of supersensitivity. The results suggest that βIVa may possess an enhanced ability to bind paclitaxel that increases sensitivity to the drug and acts substoichiometrically. At high levels of βVIa expression, however, microtubule disruptive effects counteract the assembly promoting pressure exerted by increased paclitaxel binding, and drug supersensitivity is lost. From this study, I concluded that β-tubulin isotypes behave differently from each other in terms of microtubule organization, microtubule assembly and dynamics, and antimitotic drug sensitivity. The isotype composition of cell can impart subtle to dramatic effects on the properties of microtubules leading to potential functional consequences and opening the opportunity to exploit differences in microtubule isotype composition for therapeutic gain. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin-2 (IL-2) is a major T cell growth factor and plays an essential role in the development of normal immune responses. The Janus kinases (Jaks) and Signal transducers and activators of transcription (Stats) are critical for transducing signals from the IL-2 receptors (IL2Rs) to the nucleus to control cell growth and differentiation. In recent years there has been increasing evidence to indicate that the IL-2 activated Jak3/Stat5 pathway provides a new molecular target for immune suppression. Thus, understanding the regulation of this effector cascade has important therapeutic potential.^ One objective of this work was to identify and define the role and molecular mechanism of novel phosphorylation sites in Jak3. Using functional proteomics, three novel Jak3 phosphorylation sites, Y904, Y939 and S574 were identified. Phosphospecific antibodies confirmed that phosphorylation of Y904 and Y939 were mediated by IL-2 and other IL-2 family cytokines in distinct cell types. Biochemical analysis demonstrated that phosphorylation of both Y904 and Y939 positively regulated Jak3 enzymatic activity, while phosphorylation of S574 did not affect Jak3 in vitro kinase activity. However, a gain-of-function mutation of S574 in Jak3 abrogated IL-2 mediated Stat5 activation, suggesting that phosphorylation of this residue might serve a negative role to attenuate IL-2 signaling. Furthermore, mechanistic analysis suggested that phosphorylation of Y904 in Jak3 affects the KmATP of Jak3, while phosphorylation of Y939 in Jak3 was required to bind one of its substrates, Stat5.^ The second objective was to determine the role of serine/threonine phosphatases in the regulation of the IL2R complex. Activation of Jak3 and Stat5 by IL-2 is a transient event mediated by phosphorylation. Using a specific PP1/PP2A inhibitor, we observed that inhibition of PP1/PP2A negatively regulated the IL-2 activated Jak3/Stat5 signaling pathway in a human NK cell line (YT) and primary human T cells. More importantly, coimmunoprecipitation assays indicated that inhibition of PP1/PP2A blocked the formation of an active IL2R complex. Pretreatment of cells with the inhibitor also reduced the electrophoretic mobility of the IL2Rβ and IL2Rγ subunits in YT cells, suggesting that inhibition of PP1/PP2A directly or indirectly regulates undefined serine/threonine kinases which phosphorylate these proteins. Based on these observations, a model has emerged that serine/threonine phosphorylation of the IL2Rβ and IL2Rγ subunits causes a conformational change of these proteins, which disrupts IL2R dimerization and association of Jak3 and Stat5 to these receptors.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several immune pathologies are the result of aberrant regulation of T lymphocytes. Pronounced T cell proliferation can result in autoimmunity or hematologic malignancy, whereas loss of T cell activity can manifest as immunodeficiency. Thus, there is a critical need to characterize the signal transduction pathways that mediate T cell activation so that novel and rational strategies to detect and effectively control T cell mediated disease can be achieved. ^ The first objective of this dissertation was to identify and characterize novel T cell regulatory proteins that are differentially expressed upon antigen induced activation. Using a functional proteomics approach, two members of the prohibitin (Phb) family of proteins, Phb1 and Phb2, were determined to be upregulated upon activation of primary human T cells. Furthermore, their regulated expression was dependent upon CD3 and CD28 signaling pathways which synergistically increased their expression. In contrast to previous reports of Phb nuclear localization, both proteins were determined to localize to the mitochondrial inner membrane of human T cells. Additionally, novel Phb phosphorylation sites were identified and characterized using mass spectrometry, phosphospecific antibodies and site directed mutagenesis. ^ Prohibitins have been proposed to play important roles in cancer development however the mechanism of action has not been elucidated. The second objective of this dissertation was to define the functional role of Phbs in T cell activity, survival and disease. Compared to levels in normal human T cells, Phb expression was higher in the human tumor T cell line Kit225 and subcellularly localized to the mitochondrion. Ablation of Phb expression by siRNA treatment of Kit225 cells resulted in disruption of mitochondrial membrane potential and significantly enhanced their sensitivity to cell death, suggesting they serve a protective function in T cells. Furthermore, Q-RT-PCR analysis of human oncology cDNA expression libraries indicated the Phbs may represent hematological cancer biomarkers. Indeed, Phb1 and Phb2 protein levels were 6-10 fold higher in peripheral blood mononuclear cells isolated from malignant lymphoma and multiple myeloma patients compared to healthy individuals. ^ Taken together, Phb1 and Phb2 are novel phosphoproteins upregulated during T cell activation and transformation to function in the maintenance of mitochondrial integrity and perhaps energy metabolism, thus representing previously unrecognized intracellular biomarkers and therapeutic targets for regulating T cell activation and hematologic malignancies. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the rabbit retina, there are two kinds of horizontal cells (HCs). The A-type HC is a large axonless cell which contacts cones exclusively. The B-type HC is an axon bearing cell. While the somatic dendrites of B-type HCs also contact cones, the axon expands into an elaborately branched structure, the axon terminal (AT), which contacts a large number of rods. It is difficult to label the different HCs selectively by immunochemical methods. Therefore, we developed dye injection methods to label each type of HC. Then it was possible, (1) to describe the detailed structure of the AT (2) to identify the glutamate receptors mediating cone input to A and B-type HCs and rod input to ATs and (3) to test the hypothesis that the B-type HCs are coupled via Cx57 gap junctions. ^ To obtain well filled examples of single HCs, it was necessary to block gap junction coupling to stop the spread of Neurobiotin through the network. We used dye coupling in A-type HCs to screen a series of potential gap junction antagonists. One of these compounds, meclofenamic acid (MFA), was potent, water soluble and easily reversible. This compound may be a useful tool to manipulate gap junction coupling. ^ In the presence of MFA, Neurobiotin passed down the axon of B-type HCs to reveal the detailed structure of the AT. We observed that only one AT ending entered each rod spherule invagination. This observation was confirmed by calculation and two dye injections. ^ Glutamate is the neurotransmitter used by both rods and cones. AMPA receptors were colocalized with the dendrites of A and B-type HCs at each cone pedicle. In addition, AMPA receptors were located on the AT ending at each rod spherule. Thus rod and cone input to HCs is mediated by AMPA receptors. ^ A-type and B-type HCs may express different connexins because they have different dye-coupling properties. Recently, we found that connexin50 (Cx50) is expressed by A-type HCs. B-type HCs and B-type ATs are also independently coupled. Cx57 was expressed in the OPL and double label studies showed that Cx 57 was colocalized with the AT matrix but not with the somatic dendrites of B-type HCs. ^ In summary, we have identified a useful gap junction antagonist, MFA. There is one AT ending at each rod spherule, rods inputs to ATs is mediated by AMPA receptors and coupling in the AT matrix is mediated by Cx57. This confirms that HCs with different properties use distinct connexins. The properties of ATs described in this research are consistent. The connections and properties reported here suggest that ATs functions as rod HCs and provide a negative feedback signal to rods. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bloom syndrome (BS) is an autosomal recessive disorder characterized by dwarfism, immunodeficiency, impaired fertility, and most importantly, early development of a broad range of cancers. The hallmark of BS cells is hyper-recombination, characterized by a drastically elevated frequency of sister chromatid exchange (SCE). BLM, the gene mutated in BS, encodes a DNA helicase of the RecQ protein family. BLM is thought to participate in several DNA transactions and to interact with many proteins involved in DNA replication, recombination, and repair. However, the precise function of BLM and the BLM-dependent anti-tumor mechanism remain obscure. ^ A novel protein, BLAP75 (BLM-associated polypeptide, 75KD), was identified to form an evolutionarily conserved complex with BLM and DNA topoisomerase IIIα (Topo IIIα). Our work demonstrates that loss of BLAP75 destabilized BLM and Topo IIIα proteins. BLAP75 colocalized with BLM in subnuclear foci in response to DNA damage and the recruitment of BLM to these foci was BLAP75-dependent. Moreover, depletion of BLAP75 by siRNA resulted in an elevated SCE rate similar to cells depleted of BLM by siRNA. In addition, RNAi-mediated silencing of BLAP75 greatly diminished cell viability. This cellular deficiency was rescued by expression of wild type BLAP75 but not BLAP75 with mutated conserved domain III, which abrogated the interaction between BLAP75, BLM and Topo IIIα, suggesting that the integrity of BLM-Topo IIIα-BLAP75 complex might be critical for cell survival. Finally, I found that BLAP75 was phosphorylated during mitosis and upon various DNA-damaging agents, implying that BLAP75 might also function in mitosis and DNA damage response. ^ Taken together, this study has defined BLAP75 as an integral component of the BLM complex to maintain genome stability. Our findings provide insights into the molecular mechanisms of the BLM helicase pathway and tumorigenesis process associated with these mechanisms. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion channels play a crucial role in the functioning of different systems of the body because of their ability to bridge the cell membrane and allow ions to pass in and out of the cell. Ionotropic glutamate receptors are one class of these important proteins and have been shown to be critical in propagating synaptic transmission in the central nervous system and in other diverse functions throughout the body. Because of their wide-ranging effects, this family of receptors is an important target for structure-function investigations to understand their mechanism of action. ^ α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are one subtype of glutamate receptors and have been shown to be the primary receptors involved in rapid excitatory signaling in the central nervous system. Agonist binding to the extracellular ligand binding domain of these receptors causes various conformational changes that culminate in formation of the ion channel. Previous structural investigations have provided important information about their mechanism of action, including uncovering a relationship between the degree of cleft closure in the binding domain and activation of the receptor. However, what question remains unanswered is how specific interactions between the agonist and the protein interplay with cleft closure to mediate receptor activation. ^ To investigate this question, I applied a multiscale approach to investigate the effects of agonist binding on various levels. Vibrational spectroscopy was utilized to investigate molecular-level interactions in the binding pocket, and fluorescence resonance energy transfer (FRET) was employed to measure cleft closure in the isolated ligand binding domain. The results of these studies in the isolated binding domain were then correlated to activation of the full receptor. These investigations showed a relationship between the strength of the interaction at the α-amine group of the agonist and extent of receptor activation, where a stronger interaction correlated to a larger activation, which was upheld even when the extent of cleft closure did not correlate to activation. These results show that this interaction at the α-amine group is critical in mediating the allosteric mechanism of activation and provide a bit more insight into how agonist binding is coupled to channel gating in AMPA receptors. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordinated expression of virulence genes in Bacillus anthracis occurs via a multi-faceted signal transduction pathway that is dependent upon the AtxA protein. Intricate control of atxA gene transcription and AtxA protein function have become apparent from studies of AtxA-induced synthesis of the anthrax toxin proteins and the poly-D-glutamic acid capsule, two factors with important roles in B. anthracis pathogenesis. The amino-terminal region of the AtxA protein contains winged-helix (WH) and helix-turn-helix (HTH) motifs, structural features associated with DNA-binding. Using filter binding assays, I determined that AtxA interacted non-specifically at a low nanomolar affinity with a target promoter (Plef) and AtxA-independent promoters. AtxA also contains motifs associated with phosphoenolpyruvate: sugar phosphotransferase system (PTS) regulation. These PTS-regulated domains, PRD1 and PRD2, are within the central amino acid sequence. Specific histidines in the PRDs serve as sites of phosphorylation (H199 and H379). Phosphorylation of H199 increases AtxA activity; whereas, H379 phosphorylation decreases AtxA function. For my dissertation, I hypothesized that AtxA binds target promoters to activate transcription and that DNA-binding activity is regulated via structural changes within the PRDs and a carboxy-terminal EIIB-like motif that are induced by phosphorylation and ligand binding. I determined that AtxA has one large protease-inaccessible domain containing the PRDs and the carboxy-terminal end of the protein. These results suggest that AtxA has a domain that is distinct from the putative DNA-binding region of the protein. My data indicate that AtxA activity is associated with AtxA multimerization. Oligomeric AtxA was detected when co-affinity purification, non-denaturing gel electrophoresis, and bis(maleimido)hexane (BMH) cross-linking techniques were employed. I exploited the specificity of BMH for cysteine residues to show that AtxA was cross-linked at C402, implicating the carboxy-terminal EIIB-like region in protein-protein interactions. In addition, higher amounts of the cross-linked dimeric form of AtxA were observed when cells were cultured in conditions that promote toxin gene expression. Based on the results, I propose that AtxA multimerization requires the EIIB-like motif and multimerization of AtxA positively impacts function. I investigated the role of the PTS in the function of AtxA and the impact of phosphomimetic residues on AtxA multimerization. B. anthracis Enzyme I (EI) and HPr did not facilitate phosphorylation of AtxA in vitro. Moreover, markerless deletion of ptsHI in B. anthracis did not perturb AtxA function. Taken together, these results suggest that proteins other than the PTS phosphorylate AtxA. Point mutations mimicking phosphohistidine (H to D) and non-phosphorylated histidine (H to A) were tested for an impact on AtxA activity and multimerization. AtxA H199D, AtxA H199A, and AtxA H379A displayed multimerization phenotypes similar to that of the native protein, whereas AtxA H379D was not susceptible to BMH cross-linking or co-affinity purification with AtxA-His. These data suggest that phosphorylation of H379 may decrease AtxA activity by preventing AtxA multimerization. Overall, my data support the following model of AtxA function. AtxA binds to target gene promoters in an oligomeric state. AtxA activity is increased in response to the host-related signal bicarbonate/CO2 because this signal enhances AtxA multimerization. In contrast, AtxA activity is decreased by phosphorylation at H379 because multimerization is inhibited. Future studies will address the interplay between bicarbonate/CO2 signaling and phosphorylation on AtxA function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ribbon synapses are found in sensory systems and are characterized by ‘ribbon-like’ organelles that tether synaptic vesicles. The synaptic ribbons co-localize with sites of calcium entry and vesicle fusion, forming ribbon-style active zones. The ability of ribbon synapses to maintain rapid and sustained neurotransmission is critical for vision, hearing and balance. At retinal ribbon synapses, three vesicle pools have been proposed. A rapid pool of vesicles that are docked at the plasma membrane, and whose fusion is limited only by calcium entry, a releasable pool of ATP-primed vesicles whose size also correlates with the number of ribbon-tethered vesicles, and a reserve pool of non-ribbon-tethered cytoplasmic vesicles. However evidence of vesicle fusion at sites away from ribbon-style active zones questions this organization. Another fundamental question underlying the mechanism of vesicle fusion at these synapses is the role of SNARE (Soluble N-ethylmaleimide sensitive factor Attachment Protein Receptor) proteins. Vesicles at conventional neurons undergo SNARE complex-mediated fusion. However a recent study has suggested that ribbon synapses involved in hearing can operate independently of neuronal SNAREs. We used the well-characterized goldfish bipolar neuron to investigate the organization of vesicle pools and the role of SNARE proteins at a retinal ribbon synapse. We blocked functional refilling of the releasable pool and then stimulated bipolar terminals with brief depolarizations that triggered the fusion of the rapid pool of vesicles. We found that the rapid pool draws vesicles from the releasable pool and that both pools undergo release at ribbon-style active zones. To assess the functional role of SNARE proteins at retinal ribbon synapses, we used peptides derived from SNARE proteins that compete with endogenous proteins for SNARE complex formation. The SNARE peptides blocked fusion of reserve vesicles but not vesicles in the rapid and releasable pools, possibly because both rapid and releasable vesicles were associated with preformed SNARE complexes. However, an activity-dependent block in refilling of the releasable pool was seen, suggesting that new SNARE complexes must be formed before vesicles can join a fusion-competent pool. Taken together, our results suggest that SNARE complex-mediated exocytosis of serially-organized vesicle pools at ribbon-style active zones is important in the neurotransmission of vision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uridine-rich small nuclear RNAs (U snRNAs) play essential roles in eukaryotic gene expression by facilitating the removal of introns from mRNA precursors and the processing of the replication-dependent histone pre-mRNAs. Formation of the 3’ end of these snRNAs is carried out by a poorly characterized, twelve-membered protein complex named Integrator Complex. In the effort to understand Integrator Complex function in the formation of the snRNA 3’ end, we performed a functional RNAi screen in Drosophila S2 cells to identify protein factors required for snRNA 3’ end formation. This screen was conducted by using a fluorescence-based reporter that elicits GFP expression in response to a deficiency in snRNA processing. Besides scoring the known Integrator subunits, we identified Asunder and CG4785 as additional core members of the Integrator Complex. Additionally, we also found a conserved requirement for Cyclin C and Cdk8 in both fly and human snRNA 3’ end processing. We have further demonstrated that the kinase activity of Cdk8 is critical for snRNA 3’ end processing and is likely to function independent of its well-documented function within the Mediator Cdk8 module. Taken together, this work functionally defines the Drosophila Integrator Complex and demonstrates a novel function for Cyclin C/Cdk8 in snRNA 3’ end formation. This thesis work has also characterized an important functional interaction mediated by a microdomain within Integrator subunit 12 (IntS12) and IntS1 that is required for the activity of the Integrator Complex in processing the snRNA 3’ end. Through the development of a reporter-based functional RNAi-rescue assay in Drosophila S2 cells, we analyzed domains within IntS12 required for snRNA 3’ end formation. This analysis unexpectedly revealed that an N-terminal 30 amino acid region and not the highly conserved central PHD finger domain, is required for snRNA 3’ end cleavage. The IntS12 microdomain (1-45) functions autonomously, and is sufficient to interact and stabilize the putative scaffold protein IntS1. Our findings provide more details of the Integrator Complex for understanding the molecular mechanism of snRNA 3’ end processing. Moreover, these results lay the foundation for future studies of the complex through the identification of a novel functional domain within one subunit and the identification of additional subunits.