996 resultados para fixação biológica do N2
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Entraves e incentivos ao desenvolvimento empresarial na fileira da agricultura biológica em Portugal
Resumo:
A Agricultura Biológica é uma atividade que tem sentido um crescimento significativo a nível mundial nos últimos anos. Portugal parece não estar, no entanto, a acompanhar este ritmo. Este projeto de investigação terá como objetivo aferir quais os principais entraves e incentivos ao desenvolvimento empresarial da Agricultura Biológica em Portugal. A metodologia proposta é qualitativa, com execução por via de um case-study que permita estudar os pressupostos relacionados com a cultura, as políticas, a complexidade técnica dos processos de produção, comportamento do consumidor e marketing bem como a distribuição e comercialização. A principal conclusão é que existem mais fatores a servir de entrave do que de incentivo no que concerne ao desenvolvimento empresarial da Agricultura Biológica em Portugal.
Resumo:
Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz
Resumo:
Mode of access: Internet.
Resumo:
Trichodesmium sp. isolated from the Great Barrier Reef lagoon was cultured in artificial seawater media containing a range of salinities. Trichodesmium sp. actively grew over a wide range of salinities (22 to 43 psu) and hence can be classed as euryhaline. Maximum growth occurred with salinities in the range 33 to 37 psu. Chl a content and alkaline phosphatase activity were found to increase with salinity over the range 22 to 43 psu, but the N-2 fixation rate was reduced at salinities below and above the range for maximum growth. Growth in media exhibiting maximum growth was characterised by well-dispersed cultures of filaments, while significant aggregations of filaments formed in other media. It is proposed that the tendency for Trichodesmium filaments to aggregate in media with salinities outside the range for maximum growth is an opportunistic response to a deficiency of cellular nitrogen, which results from the reduced N-2 fixation rates, and the aggregation occurs in order to enhance the uptake of combined N released within the aggregates and/or the N-2 fixation within the aggregates.
Resumo:
Various factors affecting N-2 fixation of a cultured strain of Trichodesmium sp. (GBRTRLI101) from the Great Barrier Reef Lagoon were investigated. The diurnal pattern of N2 fixation demonstrated that it was primarily light-induced although fixation continued to occur for at least 1 h in the dark in samples that had been actively fixing N-2. N-2 fixation was dependent on the light intensity and stimulated more by white light when compared with blue, green, yellow and red light whereas rates of N-2 fixation decreased most under red light. Inorganic phosphorous concentrations in the lower range of treatments up to 1.2 muM significantly stimulated N-2 fixation and further additions promoted little or no increase in N-2 fixation. Organic phosphorous (Na-glycerophosphate) also stimulated N-2 fixation rates. Added combined nitrogen (NH4+, NO3-, urea) of 10 muM did not inhibit N-2 fixation in short-term studies (first generation), however it was depressed in the long-term studies (fifth generation). (C) 2003 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
A series of mesoporous Al2O3 samples with different porous structures and phases were prepared and used as supports for Cu/Al2O3 catalysts. These catalysts were characterized by N-2 adsorption, NMR, TGA, XRD, and UV - vis spectroscopic techniques and tested for the catalytic reaction of N2O decomposition. The activity increased with the increasing calcination temperatures of supports from 450 to 900 degreesC; however, a further increase in calcination temperature up to 1200 degreesC resulted in a significant reduction in activity. Characterization revealed that the calcination temperatures of supports influenced the porous structures and phases of the supports, which in turn affected the dispersions, phases, and activities of the impregnated copper catalyst. The different roles of surface spinel, bulk CuAl2O4, and bulk CuO is clarified for N2O catalytic decomposition. Two mechanism schemes were thus proposed to account for the varying activities of different catalysts.
Resumo:
Studies were performed to investigate the UDP-glucuronosyltransferase enzyme( s) responsible for the human liver microsomal N2-glucuronidation of the anticonvulsant drug lamotrigine ( LTG) and the mechanistic basis for the LTG-valproic acid ( VPA) interaction in vivo. LTG N2-glucuronidation by microsomes from five livers exhibited atypical kinetics, best described by a model comprising the expressions for the Hill ( 1869 +/- 1286 mu M, n = 0.65 +/- 0.16) and Michaelis-Menten ( Km 2234 +/- 774 mu M) equations. The UGT1A4 inhibitor hecogenin abolished the Michaelis-Menten component, without affecting the Hill component. LTG N2-glucuronidation by recombinant UGT1A4 exhibited Michaelis-Menten kinetics, with a K-m of 1558 mu M. Although recombinant UGT2B7 exhibited only low activity toward LTG, inhibition by zidovudine and fluconazole and activation by bovine serum albumin ( BSA) ( 2%) strongly suggested that this enzyme was responsible for the Hill component of microsomal LTG N2-glucuronidation. VPA ( 10 mM) abolished the Hill component of microsomal LTG N2-glucuronidation, without affecting the Michaelis-Menten component or UGT1A4-catalyzed LTG metabolism. K-i values for inhibition of the Hill component of LTG N2-glucuronidation by VPA were 2465 +/- 370 mu M and 387 +/- 12 mu M in the absence and presence, respectively, of BSA ( 2%). Consistent with published data for the effect of fluconazole on zidovudine glucuronidation by human liver microsomal UGT2B7, the Ki value generated in the presence of BSA predicted the magnitude of the LTG-VPA interaction reported in vivo. These data indicate that UGT2B7 and UGT1A4 are responsible for the Hill and Michaelis-Menten components, respectively, of microsomal LTG N2-glucuronidation, and the LTG-VPA interaction in vivo arises from inhibition of UGT2B7.
Resumo:
[Cu(hyetrz)3](CF3SO3)2·H2O [hyetrz = 4-(2′-hydroxyethyl)-1,2,4-triazole] represents the first structurally characterised ferromagnetically coupled CuII chain compound containing triple N1,N2-1,2,4-triazole bridges. catena-[μ-Tris{4-(2′-hydroxyethyl)-1,2,4-triazole-N1,N2}copper(II)] bis(trifluoromethanesulfonate) hydrate (C14H23F6S2O10CuN9) crystallises in the triclinic space group Pl, a = 13.54(3), b = 14.37(3), c = 15.61(4) Å, α = 95.9(1), β = 104.9(1), γ = 106.5(1)°, V = 2763(11) Å3, Z = 4 (CuII units). The CuII ions are linked by triple N1,N2-1,2,4-triazole bridges yielding an alternating chain with Cu1−Cu2 = 3.8842(4) Å and Cu2−Cu3 = 3.9354(4) Å. Analysis of the magnetic data according to a high-temperature series expansion gives a J value of +1.45(3) cm−1. The nature and the magnitude of the ferromagnetic exchange have been discussed on the basis of the structural features. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003).
Resumo:
Secondary pyrolysis in fluidized bed fast pyrolysis of biomass is the focus of this work. A novel computational fluid dynamics (CFD) model coupled with a comprehensive chemistry scheme (134 species and 4169 reactions, in CHEMKIN format) has been developed to investigate this complex phenomenon. Previous results from a transient three-dimensional model of primary pyrolysis were used for the source terms of primary products in this model. A parametric study of reaction atmospheres (H2O, N2, H2, CO2, CO) has been performed. For the N2 and H2O atmosphere, results of the model compared favorably to experimentally obtained yields after the temperature was adjusted to a value higher than that used in experiments. One notable deviation versus experiments is pyrolytic water yield and yield of higher hydrocarbons. The model suggests a not overly strong impact of the reaction atmosphere. However, both chemical and physical effects were observed. Most notably, effects could be seen on the yield of various compounds, temperature profile throughout the reactor system, residence time, radical concentration, and turbulent intensity. At the investigated temperature (873 K), turbulent intensity appeared to have the strongest influence on liquid yield. With the aid of acceleration techniques, most importantly dimension reduction, chemistry agglomeration, and in-situ tabulation, a converged solution could be obtained within a reasonable time (∼30 h). As such, a new potentially useful method has been suggested for numerical analysis of fast pyrolysis.