789 resultados para fish handling
Resumo:
Biotechnology can currently be considered of importance in aquaculture. The increase in the production of aquatic organisms over the last two decades through the use of biotechnology indicates that in a few generations biotechnology may overtake conventional techniques, at least for the commercially more valuable species. In the last few years, genetics has contributed greatly to fish culture through the application of the more recent techniques developed in biotechnology and in genetic engineering. At present, the most commonly used methods in fish biotechnology are chromosome manipulation and hormonal treatments, which can be used to produce triploid, tetraploid, haploid, gynogenetic and androgenetic fish. These result in the production of individuals and lineages of sterile, monosex or highly endogamic fish. The use of such strategies in fish culture has as a practical objective the control of precocious sexual maturation in certain species; other uses are the production of larger specimens by control of the reproductive process and the attainment of monosex lines containing only those individuals of greater commercial value. The use of new technologies, such as those involved in gene transfer in many species, can result in modified individuals of great interest to aquaculturists and play important roles in specific programmes of fish production in the near future.
Resumo:
In this paper we describe Southern blot hybridization results probed with 5S rRNA genes for several Neotropical fish species representing different taxonomic groups. All the studied species showed a general trend with the 5S rDNA tandem repeats organized in two distinct size-classes. At the same time, data on 5S rDNA organization in fish genome were summarized. Previous information on the organization and evolution of 5S rRNA gene arrays in the genome of this vertebrate group are in agreement with the Southern results here presented. Sequences obtained for several fish species have revealed the occurrence of two distinct 5S rDNA classes characterized by distinct non-transcribed spacer sequences, which are clustered in different chromosomes in some species. Moreover, the 5S rDNA loci are generally distributed in an interstitial position in the chromosomes and they are usually not syntenic to the 45S rDNA. The presence of two classes of 5S rDNA in several non-related fish species suggests that this could be a common condition for the 5S rRNA gene organization in the fish genome.
Resumo:
New data are presented on the sex chromosomes of the fish species Eigenmannia virescens (Gymnotiformes, Sternopygidae). A new finding, involving the occurrence of ZZ/ ZW sex chromosomes, is described in specimens sampled from the Sao Francisco and Amazon river basins in Brazil. All individuals had a chromosome number of 2n = 38. The homologs of the sex chromosome pair from the Sao Francisco river basin sample differed only in their morphology, while those from the Amazonian sample differed both in morphology and heterochromatin pattern. A possible model for the evolution of the sex chromosomes in E virescens is proposed, including data from populations from the Parana (Brazil) river basin, in which male heterogamety has already been described. The occurrence of different sex chromosome systems in species and populations of the neotropical freshwater fish fauna is discussed. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
The distribution of 5-methylcytosine (5-MeC) was investigated in fish chromosomes by indirect immunofluorescence using a highly specific 5-MeC monoclonal antibody. Diploid and artificially produced triploid specimens of the pacu fish, Piaractus mesopotamicus, were analyzed. The strong immunofluorescent signals were coincident with the heterochromatic regions of both diploids and triploids in a pattern that matched the C-banding pattern. In the euchromatin, heterogeneous labeling was observed along the chromatids. The weakness of this labeling hindered comparison of the fluorescence labeling of homologous chromosomes from diploid and triploid individuals. However, no striking differences were observed. The possibility that the euchromatin labeling by the 5-MeC antibody is related to the occurrence of mildly repetitive sequences in the genome of Piaractus is discussed.
Resumo:
A substantial fraction of the eukaryotic genome consists of repetitive DNA sequences that include satellites, minisatellites, microsatellites, and transposable elements. Although extensively studied for the past three decades, the molecular forces that generate, propagate and maintain repetitive DNAs in the genomes are still discussed. To further understand the dynamics and the mechanisms of evolution of repetitive DNAs in vertebrate genome, we searched for repetitive sequences in the genome of the fish species Hoplias malabaricus. A satellite sequence, named 5SHindIII-DNA, which has a conspicuous similarity with 5S rRNA genes and spacers was identified. FISH experiments showed that the 5S rRNA bona fide gene repeats were clustered in the interstitial position of two chromosome pairs of H. malabaricus, while the satellite 5SHindIII-DNA sequences were clustered in the centromeric position in nine chromosome pairs of the species. The presence of the 5SHindIII-DNA sequences in the centromeres of several chromosomes indicates that this satellite family probably escaped from the selective pressure that maintains the structure and organization of the 5S rDNA repeats and become disperse into the genome. Although it is not feasible to explain how this sequence has been maintained in the centromeric regions, it is possible to hypothesize that it may be involved in some structural or functional role of the centromere organization.
Resumo:
Catch and selectivity parameters using gillnets were calculated for Schizodon nasutus in the Jurumirim reservoir on the Parana-panema River in southern Brazil. The simple gillnets used were made of monofilament nylon of 30 to 140 mm mesh size an of different heights. The relative abundance of the S. nasutus caught was analysed monthly and a positive relationship was found between catches per unit effort in number and biomass. The relative catches were more abundant for the nets of 40 and 50 mm, mesh size. Catches were characterized by clear temporal variations and a predominance of medium size fish throughout the study period. The selectivity curve of gillnets for S. nasutus in this ecosystem was obtained. The catch obtained was compared with the available catch for each mesh size, and the available catch for a certain length of fish was calculated starting from the theoretical selectivity curve. The 50 mm mesh size gillnet showed the best fit between real and available captures and was considered the most suitable, because a smaller mesh size resulted in a catch of predominantly immature specimens. It is expected that these results will contribute to improving management strategies for conservation of resources. Parameters such as the minimum catch length advisable or the mesh size permitted for a given species are indispensable for such decision-making.
Resumo:
DNA-based studies have been one of the major interests in conservation biology of endangered species and in population genetics. As species and population genetic assessment requires a source of biological material, the sampling strategy can be overcome by non-destructive procedures for DNA isolation. An improved method for obtaining DNA from fish fins and scales with the use of an extraction buffer containing urea and further DNA purification with phenol-chloroform is described. The methodology combines the benefits of a non-destructive DNA sampling and its high efficiency. In addition, comparisons with other methodologies for isolating DNA from fish demonstrated that the present procedure also becomes a very attractive alternative to obtain large amounts of high-quality DNA for use in different molecular analyses. The DNA samples, isolated from different fish species, have been successfully used on random amplified polymorphic DNA (RAPD) experiments, as well as on amplification of specific ribosomal and mitochondrial DNA sequences. The present DNA extraction procedure represents an alternative for population approaches and genetic studies on rare or endangered taxa.
Resumo:
The swamp eel, Synbranchus marmoratus, is a freshwater protogynic diandric species. Primary males develop directly as males while secondary males arise from the sex reversal of females. Fishes from Argentine and Brazil inland waters were collected, examined and compared for this study. In order to characterize the interstitial testicular compartment, light and electron microscopy techniques and an enzyme histochemical examination for steroidogenic cells detection were used. The interstitial compartment of S. marmoratus is composed of Leydig and myoid cells, collagen fibers, blood cells, macrophages,and amyelinic nerves. At the ultrastructural level, no differences were observed in the interstitial tissue, either between specimens from the different sampling sites or between primary and secondary males. Leydig cells are present in all testes examined throughout the year. A cytoplasmatic reaction of 3beta-HSD was detected only in Leydig cells during sex reversal and in both type of males, mainly during the regressed and early maturation classes (autumn and winter). Leydig cells possess the typical fine structural characteristics associated with steroidogenesis. Furthermore, in both type of males, during sex reversal and after the spawning period, the number of granulocytes and macrophages present in the testes increased, suggesting that they could be involved in phagocytosis and resorption of damaged cells. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The importance of genetic evaluations in aquaculture programmes has been increased significantly not only to improve effectiveness of hatchery production but also to maintain genetic diversity. In the present study, wild and captive populations of a commercially important neotropical freshwater fish, Brycon cephalus (Amazonian matrincha), were analyzed in order to evaluate the levels of genetic diversity in a breeding programme at a Brazilian research institute of tropical fish. Random Amplified Polymorphic DNA fingerprinting was used to access the genetic variability of a wild stock from the Amazon River and of three captive stocks that correspond to consecutive generations from the fishery culture. Although farmed stocks showed considerably lower genetic variation than the wild population, a significantly higher level of polymorphism was detected in the third hatchery generation. The results seem to reflect a common breeding practice on several hatchery fish programmes that use a small number of parents as broodstocks, obtaining reproductive success with few non-identified mating couples. The obtained data were useful for discussing suitable strategies for the genetic management and biodiversity conservation of this species.
Resumo:
The family Loricariidae, with about 683 species, is one the largest fish families in the world. The subfamily Hypostominae was recently reviewed and is now divided in five tribes. With the main objective of contributing to a better understanding of the relationships of the members of the subfamily Hypostominae, cytogenetic analyses were conducted in seven species (three Hypostomini, three Pterygoplichthini and two Ancistrini) from Brazil and Venezuela. In Pterygoplichthini, all species show 2n = 52 chromosomes. In Hypostomini Hypostomus ancistroides has 2n = 68, H. regani 2n = 72 and Hypostomus goyazensis 2n = 72 chromosomes. In Ancistrini Ancistrus n. sp. 1 has 2n = 39/40 with a sex chromosome system of the type XX/X0, which is a novelty for neotropical fishes, and Ancistrus n. sp. 2 has 2n = 52 chromosomes. Six species have single Ag-NORs and two multiple Ag-NORs. The possible cytogenetic relationships among the species of Hypostominae are discussed.