994 resultados para first president
Resumo:
Enantiospecific first total synthesis of the angular triquinane sesquiterpene (65,7R)-silphiperfolan-6-ol has been accomplished, starting from 2-(3-isopropenyl-2-methylene-1-methylcyclopent-1-yl)acetic acid (readily available from (R)-limonene) employing an efficient, regioselective intramolecular rhodium carbenoid insertion into the CH bond of a tertiary methyl group as the key step. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The enantiospecific first total synthesis of the enantiomer of the irregular sesquiterpene from Ligusticumgrayi allothapsenol, starting from the readily available monoterpene (R)-carvone, is described, which confirmed the assumed absolute configuration of the natural product.
Resumo:
The size of the shear transformation zone (STZ) that initiates the elastic to plastic transition in a Zr-based bulk metallic glass was estimated by conducting a statistical analysis of the first pop-in event during spherical nanoindentation. A series of experiments led us to a successful description of the distribution of shear strength for the transition and its dependence on the loading rate. From the activation volume determined by statistical analysis the STZ size was estimated based on a cooperative shearing model. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
We determine the nature of coupled phonons and magnetic excitations in AlFeO3 using inelastic light scattering from 5 to 315 K covering a spectral range from 100 to 2200 cm(-1) and complementary first-principles density functional theory-based calculations. A strong spin-phonon coupling and magnetic ordering-induced phonon renormalization are evident in (1) anomalous temperature dependence of many modes with frequencies below 850 cm(-1), particularly near the magnetic transition temperature T-c approximate to 250 K, and (2) distinct changes in band positions of high-frequency Raman bands between 1100 and 1800 cm(-1); in particular, a broad mode near 1250 cm(-1) appears only below T-c, attributed to the two-magnon Raman scattering. We also observe weak anomalies in the mode frequencies similar to 100 K due to a magnetically driven ferroelectric phase transition. Understanding of these experimental observations has been possible on the basis of first-principles calculations of the phonons' spectrum and their coupling with spins.
Resumo:
A review of various contributions of first principles calculations in the area of hydrogen storage, particularly for the carbon-based sorption materials, is presented. Carbon-based sorption materials are considered as promising hydrogen storage media due to their light weight and large surface area. Depending upon the hybridization state of carbon, these materials can bind the hydrogen via various mechanisms, including physisorption, Kubas and chemical bonding. While attractive binding energy range of Kubas bonding has led to design of several promising storage systems, in reality the experiments remain very few due to materials design challenges that are yet to be overcome. Finally, we will discuss the spillover process, which deals with the catalytic chemisorption of hydrogen, and arguably is the most promising approach for reversibly storing hydrogen under ambient conditions.
Resumo:
Study of hypersynchronous activity is of prime importance for combating epilepsy. Studies on network structure typically reconstruct the network by measuring various aspects of the interaction between neurons and subsequently measure the properties of the reconstructed network. In sub-sampled networks such methods lead to significant errors in reconstruction. Using rat hippocampal neurons cultured on a multi-electrode array dish and a glutamate injury model of epilepsy in vitro, we studied synchronous activity in neuronal networks. Using the first spike latencies in various neurons during a network burst, we extract various recurring spatio-temporal onset patterns in the networks. Comparing the patterns seen in control and injured networks, we observe that injured networks express a wide diversity in their foci (origin) and activation pattern, while control networks show limited diversity. Furthermore, we note that onset patterns in glutamate injured networks show a positive correlation between synchronization delay and physical distance between neurons, while control networks do not.
Resumo:
Study of hypersynchronous activity is of prime importance for combating epilepsy. Studies on network structure typically reconstruct the network by measuring various aspects of the interaction between neurons and subsequently measure the properties of the reconstructed network. In sub-sampled networks such methods lead to significant errors in reconstruction. Using rat hippocampal neurons cultured on a multi-electrode array dish and a glutamate injury model of epilepsy in vitro, we studied synchronous activity in neuronal networks. Using the first spike latencies in various neurons during a network burst, we extract various recurring spatio-temporal onset patterns in the networks. Comparing the patterns seen in control and injured networks, we observe that injured networks express a wide diversity in their foci (origin) and activation pattern, while control networks show limited diversity. Furthermore, we note that onset patterns in glutamate injured networks show a positive correlation between synchronization delay and physical distance between neurons, while control networks do not.
Resumo:
Titanium nitride (TiN), which is widely used for hard coatings, reportedly undergoes a pressure-induced structural phase transformation, from a NaCl to a CsCl structure, at similar to 7 GPa. In this paper, we use first-principles calculations based on density functional theory with a generalized gradient approximation of the exchange correlation energy to determine the structural stability of this transformation. Our results show that the stress required for this structural transformation is substantially lower (by more than an order of magnitude) when it is deviatoric in nature vis-a-vis that under hydrostatic pressure. Local stability of the structure is assessed with phonon dispersion determined at different pressures, and we find that CsCl structure of TiN is expected to distort after the transformation. From the electronic structure calculations, we estimate the electrical conductivity of TiN in the CsCl structure to be about 5 times of that in NaCl structure, which should be observable experimentally. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4798591]
Resumo:
Melting and freezing transitions in two dimensional (2D) systems are known to show highly unusual characteristics. Most of the earlier studies considered atomic systems: the melting of 2D molecular solids is still largely unexplored. In order to understand the role of anisotropy as well as multiple energy and length scales present in molecular systems, here we report computer simulation studies of melting of 2D molecular systems. We computed a limited portion of the solid-liquid phase diagram. We find that the interplay between the strength of isotropic and anisotropic interactions can give rise to rich phase diagram consisting of isotropic liquid and two crystalline phases-honeycomb and oblique. The nature of the transition depends on the relative strength of the anisotropic interaction and a strongly first order melting turns into a weakly first order transition on increasing the strength of the isotropic interaction. This crossover can be attributed to an increase in stiffness of the solid phase free energy minimum on increasing the strength of the anisotropic interaction. The defects involved in melting of molecular systems are quite different from those known for the atomic systems.
Resumo:
A new species of caecilian amphibian, Gegeneophis orientalis sp. nov., is described based on a series of nine specimens from high elevation (ca. 1,200 m) habitats in the Eastern Ghats in the states of Andhra Pradesh and Odisha, India. This species differs from all other congeners in having only bicuspid teeth in the outer as well as inner rows. The new species is the first caecilian reported from the state of Odisha, the first teresomatan caecilian from the Eastern Ghats, and is the only Indian indotyphlid known from outside the Western Ghats region.
Resumo:
Cyclic AMP (cAMP) has emerged as a pivotal molecule for signalling in all life forms. Mycobacterial genomes have been found to encode for numerous proteins that are involved in cAMP generation, degradation and utilization. Many of these proteins have domain organizations unique to mycobacteria. This review summarizes recent advances in mechanisms of cAMP synthesis and degradation, focusing on the processes by which cAMP modulates mycobacterial signalling. We explore its impact on the physiology of the organism and on the discourse between M. tuberculosis and its host.
Resumo:
The First Order Reversal Curve (FORC) method has been utilised to understand the magnetization reversal and the extent of the irreversible magnetization of the soft CoFe2O4-hard SrFe12O19 nanocomposite in the nonexchange spring and the exchange spring regime. The single peak switching behaviour in the FORC distribution of the exchange spring composite confirms the coherent reversal of the soft and hard phases. The onset of the nucleation field and the magnetization reversal by domain wall movement are also evident from the FORC measurements. (C) 2013 AIP Publishing LLC.
Resumo:
In this paper we present an approach to build a prototype. model of a first-responder localization system intended for disaster relief operations. This system is useful to monitor and track the positions of the first-responders in an indoor environment, where GPS is not available. Each member of the first responder team is equipped with two zero-velocity-update-aided inertial navigation systems, one on each foot, a camera mounted on a helmet, and a processing platform strapped around the waist of the first responder, which fuses the data from the different sensors. The fusion algorithm runs real-time on the processing platform. The video is also processed using the DSP core of the computing machine. The processed data consisting of position, velocity, heading information along with video streams is transmitted to the command and control system via a local infrastructure WiFi network. A centralized cooperative localization algorithm, utilizing the information from Ultra Wideband based inter-agent ranging devices combined with the position estimates and uncertainties of each first responder, has also been implemented.
Resumo:
This work describes the base triggered enhancement of first hyperpolarizability of a tautomeric organic molecule, namely, benzoylacetanilide (BA). We have used the hyper-Rayleigh scattering technique to measure the first hyperpolarizability (beta) of BA which exists in the pure keto form in water and as a keto-enol tautomer in ethanol. Its anion exists in equilibrium with the keto and enol forms at pH 11 in aqueous solution. The beta value of the anion form is 709 X 10(-30) esu, whereas that of the enol is 232 x 10(-3) esu and of the keto is 88 X 10(-30) esu. There is an enhancement of beta by similar to 8 times for the anion and similar to 3 times for the enol compared to the keto form. All these are achieved by altering the equilibrium between the three forms of BA by simple means. MP2 calculations reproduce the experimental trend, but the computed beta values are much lower than the measured values. DFT calculations with the standard B3LYP functional could not predict the right order in the beta values. The difference between experimental and calculated values is, perhaps, due to the fact that electron correlation effects are important in computing optical nonlinearities of large organic molecules and MP2 and B3LYP calculations done here for different forms of BA could not account for such effects adequately.