900 resultados para finite element homogenization method
Resumo:
STUDY DESIGN: The biomechanics of vertebral bodies augmented with real distributions of cement were investigated using nonlinear finite element (FE) analysis. OBJECTIVES: To compare stiffness, strength, and stress transfer of augmented versus nonaugmented osteoporotic vertebral bodies under compressive loading. Specifically, to examine how cement distribution, volume, and compliance affect these biomechanical variables. SUMMARY OF BACKGROUND DATA: Previous FE studies suggested that vertebroplasty might alter vertebral stress transfer, leading to adjacent vertebral failure. However, no FE study so far accounted for real cement distributions and bone damage accumulation. METHODS: Twelve vertebral bodies scanned with high-resolution pQCT and tested in compression were augmented with various volumes of cements and scanned again. Nonaugmented and augmented pQCT datasets were converted to FE models, with bone properties modeled with an elastic, plastic and damage constitutive law that was previously calibrated for the nonaugmented models. The cement-bone composite was modeled with a rule of mixture. The nonaugmented and augmented FE models were subjected to compression and their stiffness, strength, and stress map calculated for different cement compliances. RESULTS: Cement distribution dominated the stiffening and strengthening effects of augmentation. Models with cement connecting either the superior or inferior endplate (S/I fillings) were only up to 2 times stiffer than the nonaugmented models with minimal strengthening, whereas those with cement connecting both endplates (S + I fillings) were 1 to 8 times stiffer and 1 to 12 times stronger. Stress increases above and below the cement, which was higher for the S + I cases and was significantly reduced by increasing cement compliance. CONCLUSION: The developed FE approach, which accounts for real cement distributions and bone damage accumulation, provides a refined insight into the mechanics of augmented vertebral bodies. In particular, augmentation with compliant cement bridging both endplates would reduce stress transfer while providing sufficient strengthening.
Resumo:
The alveolated structure of the pulmonary acinus plays a vital role in gas exchange function. Three-dimensional (3D) analysis of the parenchymal region is fundamental to understanding this structure-function relationship, but only a limited number of attempts have been conducted in the past because of technical limitations. In this study, we developed a new image processing methodology based on finite element (FE) analysis for accurate 3D structural reconstruction of the gas exchange regions of the lung. Stereologically well characterized rat lung samples (Pediatr Res 53: 72-80, 2003) were imaged using high-resolution synchrotron radiation-based X-ray tomographic microscopy. A stack of 1,024 images (each slice: 1024 x 1024 pixels) with resolution of 1.4 mum(3) per voxel were generated. For the development of FE algorithm, regions of interest (ROI), containing approximately 7.5 million voxels, were further extracted as a working subunit. 3D FEs were created overlaying the voxel map using a grid-based hexahedral algorithm. A proper threshold value for appropriate segmentation was iteratively determined to match the calculated volume density of tissue to the stereologically determined value (Pediatr Res 53: 72-80, 2003). The resulting 3D FEs are ready to be used for 3D structural analysis as well as for subsequent FE computational analyses like fluid dynamics and skeletonization.
Resumo:
Single-screw extrusion is one of the widely used processing methods in plastics industry, which was the third largest manufacturing industry in the United States in 2007 [5]. In order to optimize the single-screw extrusion process, tremendous efforts have been devoted for development of accurate models in the last fifty years, especially for polymer melting in screw extruders. This has led to a good qualitative understanding of the melting process; however, quantitative predictions of melting from various models often have a large error in comparison to the experimental data. Thus, even nowadays, process parameters and the geometry of the extruder channel for the single-screw extrusion are determined by trial and error. Since new polymers are developed frequently, finding the optimum parameters to extrude these polymers by trial and error is costly and time consuming. In order to reduce the time and experimental work required for optimizing the process parameters and the geometry of the extruder channel for a given polymer, the main goal of this research was to perform a coordinated experimental and numerical investigation of melting in screw extrusion. In this work, a full three-dimensional finite element simulation of the two-phase flow in the melting and metering zones of a single-screw extruder was performed by solving the conservation equations for mass, momentum, and energy. The only attempt for such a three-dimensional simulation of melting in screw extruder was more than twenty years back. However, that work had only a limited success because of the capability of computers and mathematical algorithms available at that time. The dramatic improvement of computational power and mathematical knowledge now make it possible to run full 3-D simulations of two-phase flow in single-screw extruders on a desktop PC. In order to verify the numerical predictions from the full 3-D simulations of two-phase flow in single-screw extruders, a detailed experimental study was performed. This experimental study included Maddock screw-freezing experiments, Screw Simulator experiments and material characterization experiments. Maddock screw-freezing experiments were performed in order to visualize the melting profile along the single-screw extruder channel with different screw geometry configurations. These melting profiles were compared with the simulation results. Screw Simulator experiments were performed to collect the shear stress and melting flux data for various polymers. Cone and plate viscometer experiments were performed to obtain the shear viscosity data which is needed in the simulations. An optimization code was developed to optimize two screw geometry parameters, namely, screw lead (pitch) and depth in the metering section of a single-screw extruder, such that the output rate of the extruder was maximized without exceeding the maximum temperature value specified at the exit of the extruder. This optimization code used a mesh partitioning technique in order to obtain the flow domain. The simulations in this flow domain was performed using the code developed to simulate the two-phase flow in single-screw extruders.
Resumo:
Finite element tire modeling can be a challenging process, due to the overall complexities within the tire and the many variables that are required to produce capable predictive simulations. Utilizing tools from Abaqus finite element software, adequate predictive simulations that represent actual operational conditions can be made possible. Many variables that result from complex geometries and materials, multiple loading conditions, and surface contact can be incorporated into modeling simulations. This thesis outlines modeling practices used to conduct analysis on specific tire variants of the STL3 series OTR tire line, produced by Titan Tire. Finite element models were created to represent an inflated tire and rim assembly, supporting a 30,000 lb load while resting on a flat surface. Simulations were conducted with reinforcement belt cords at variable angles in order to understand how belt cord arrangement affects tire components and stiffness response.
Resumo:
Scaphoid is one of the 8 carpal bones found adjacent to the thumb supported proximally by Radius bone. During the free fall, on outstretched hand, the impact load gets transferred to the scaphoid at its free anterior end. Unique arrangement of other carpal bones in the palm is also one of the reasons for the load to get transferred to scaphoid. About half of the total load acting upon carpal bone gets transferred to scaphoid at its distal pole. There are about 10 to 12 clinically observed fracture pattern in the scaphoid due to free fall. The aim of the study is to determine the orientation of the load, magnitude of the load and the corresponding fracture pattern. This study includes both static and dynamic finite element models validated by experiments. The scaphoid model has been prepared from CT scans of a 27 year old person. The 2D slices of the CT scans have been converted to 3D model by using MIMICS software. There are four cases of loading studied which are considered to occur clinically more frequently. In case (i) the load is applied at the posterior end at distal pole whereas in case (ii), (iii) and (iv), the load is applied at anterior end at different directions. The model is given a fixed boundary condition at the region which is supported by Radius bone during the impact. Same loading and boundary conditions have been used in both static and dynamic explicit finite element analysis. The site of fracture initiation and path of fracture propagation have been identified by using max principal stress / gradient and max principal strain / gradient criterion respectively in static and dynamic explicit finite element analysis. Static and dynamic impact experiments were performed on the polyurethane foam specimens to validate the finite element results. Experimental results such as load at fracture, site of fracture initiation and path of fracture propagation have been compared with the results of finite element analysis. Four different types of fracture patterns observed in clinical studies have been identified in this study.
Resumo:
Soft tissue damage has been observed in hip joints with pathological geometries. Our primary goal was to study the relationship between morphological variations of the bony components of the hip and resultant stresses within the soft tissues of the joint during routine daily activities. The secondary goal was to find the range of morphological parameters in which stresses are minimized. Computational models of normal and pathological joints were developed based on variations of morphological parameters of the femoral head (Alpha angle) and acetabulum (CE angle). The Alpha angle was varied between 40 degrees (normal joint) and 80 degrees (cam joint). The CE angle was varied between 0 degrees (dysplastic joint) and 40 degrees (pincer joint). Dynamic loads and motions for walking and standing to sitting were applied to all joint configurations. Contact pressures and stresses were calculated and crosscompared to evaluate the influence of morphology. The stresses in the soft tissues depended strongly on the head and acetabular geometry. For the dysplastic joint, walking produced high acetabular rim stresses. Conversely, for impinging joints, standing-to-sitting activities that involved extensive motion were critical, inducing excessive distortion and shearing of the tissue-bone interface. Zones with high von Mises stresses corresponded with clinically observed damage zones in the acetabular cartilage and labrum. Hip joint morphological parameters that minimized were 20 degrees