945 resultados para fibroblast growth factor receptor 3c


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Prolyl hydroxylase (PHD) inhibitors can induce a proangiogenic response that stimulates regeneration in soft and hard tissues. However, the effect of PHD inhibitors on the dental pulp is unclear. The purpose of this study was to evaluate the effects of PHD inhibitors on the proangiogenic capacity of human dental pulp–derived cells. Methods: To test the response of dental pulp–derived cells to PHD inhibitors, the cells were exposed to dimethyloxalylglycine, desferrioxamine, L-mimosine, and cobalt chloride. To assess the response of dental pulp cells to a capping material supplemented with PHD inhibitors, the cells were treated with supernatants from calcium hydroxide. Viability, proliferation, and protein synthesis were assessed by formazan formation, 3[H]thymidine, and 3[H]leucine incorporation assays. The effect on the proangiogenic capacity was measured by immunoassays for vascular endothelial growth factor (VEGF). Results: We found that all 4 PHD inhibitors can reduce viability, proliferation, and protein synthesis at high concentrations. At nontoxic concentrations and in the presence of supernatants from calcium hydroxide, PHD inhibitors stimulated the production of VEGF in dental pulp–derived cells. When calcium hydroxide was supplemented with the PHD inhibitors, the supernatants from these preparations did not significantly elevate VEGF levels. Conclusions: These results show that PHD inhibitors can stimulate VEGF production of dental pulp–derived cells, suggesting a corresponding increase in their proangiogenic capacity. Further studies will be required to understand the impact that this might have on pulp regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deregulation of receptor tyrosine kinases (RTKs) is linked to a broad range of cancers, stressing the necessity of studying their regulatory pathways. We and others demonstrated previously that c-Cbl is necessary for the lysosomal degradation of erythropoietin-producing hepatocellular B1 (EphB1) carcinoma and epidermal growth factor receptor (EGFR) RTKs. Moreover, the tumor suppressor phosphatase and tensin homolog (PTEN) was shown to modulate c-Cbl-dependent EGFR degradation. We therefore investigated the involvement of PTEN in EphB1 signaling and degradation. We used PTEN mutants, PTEN, and NHERF1 small interfering RNA in CHO-EphB1 and SW480 cells endogenously expressing EphB1 to delineate EphB1-PTEN interactions. PTEN was constitutively associated with c-Cbl, protecting it from degradation. EphB1 stimulation triggered ∼50% serine-threonine PTEN dephosphorylation and PTEN-Cbl complex disruption, a process requiring PTEN protein phosphatase activity. Both proteins independently translocated to EphB1, with PTEN in association with the scaffold protein NHERF1. Biologically, PTEN lipid phosphatase activity impairs EphB1-dependent cell adhesion and chemotaxis. This study demonstrates for the first time in mammalian cells that the Eph receptor and PTEN associate and influence their signaling. Moreover, it contributes to the emerging concept that PTEN regulates expression of RTKs through modulation of their degradation. Finally, it reveals a new role for PTEN protein phosphatase activity involved in this process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) is a potent angiogenic factor, which also has neuroprotective activity. In view of these dual actions on vessels and neurons, we were interested whether VEGF promotes long distance axonal plasticity in the ischemic brain. Herein, we show that VEGF promotes neurological stroke recovery in mice when delivered in a delayed way starting 3 days after middle cerebral artery occlusion. Using anterograde tract-tracing experiments that we combined with histochemical and molecular biological studies, we demonstrate that although VEGF promoted angiogenesis predominantly in the ischemic hemisphere, pronounced axonal sprouting was induced by VEGF in the contralesional, but not the ipsilesional corticobulbar system. Corticobulbar plasticity was accompanied by the deactivation of the matrix metalloproteinase MMP9 in the lesioned hemisphere and the transient downregulation of the axonal growth inhibitors NG2 proteoglycan and brevican and the guidance molecules ephrin B1/2 in the contralesional hemisphere. The regulation of matrix proteinases, growth inhibitors, and guidance molecules offers insights how brain plasticity is controlled in the ischemic brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Connective tissue growth factor (CTGF) is a profibrotic protein whose systemic levels are increased in liver cirrhosis. Here, association of CTGF with stages of liver injury and complications of cirrhotic liver disease has been analyzed in patients with different aetiologies of hepatic injury. CTGF is significantly increased in portal venous serum (PVS), hepatic venous serum (HVS) and systemic venous serum (SVS) of 46 patients with liver cirrhosis compared to eight liver-healthy controls. In patients´ blood samples CTGF in HVS is about 6% higher than PVS levels indicating that CTGF produced in the liver is released to the circulation. CTGF is not associated with stages of liver cirrhosis defined by CHILD-PUGH or MELD score nor with secondary complications of portal hypertension (varices, ascites, spontaneous bacterial peritonitis). Transforming growth factor β (TGFβ) induces CTGF synthesis in hepatocytes and a positive association of systemic TGFβ1 and SVS and HVS CTGF is found. Three months after placing transjugular intrahepatic portosystemic shunt (TIPS) hepatic venous pressure gradient is reduced whereas CHILD-PUGH score, TGFβ1 and CTGF are not altered in serum of 15 patients. Current data show that the cirrhotic liver releases little CTGF but SVS, HVS and PVS CTGF levels are not associated with residual liver function and complications of cirrhosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aldosterone levels are markedly elevated during normal pregnancy but fall even though volume contracts when preeclampsia occurs. The level of aldosterone in either condition cannot be explained solely by the activity of the renin-angiotensin II system. In normal gestation, vascular endothelial growth factor (VEGF) is thought to maintain vascular health, but its role in adrenal hormone production is unknown. We hypothesized that the role of VEGF in the adrenal gland is to maintain vascular health and regulate aldosterone production. Here, we demonstrate that supernatant of endothelial cells grown in the presence of VEGF enhanced aldosterone synthase activity in human adrenocortical cells. VEGF either alone or combined with angiotensin II increased aldosterone production in adrenal cells. These data suggest that endothelial cell-dependent and independent activation of aldosterone is regulated by VEGF. In contrast to angiotensin II, VEGF did not upregulate the steroidogenic acute regulatory protein. Consistent with this observation, angiotensin II stimulated both aldosterone and cortisol synthesis from progesterone, whereas VEGF stimulated selectively aldosterone production. In rats, overexpression of soluble fms-like tyrosine kinase-1, an endogenous VEGF inhibitor, led to adrenocortical capillary rarefaction and fall in aldosterone concentrations that correlated inversely with soluble fms-like tyrosine kinase-1 levels. These findings may explain why aldosterone increases so markedly during normal gestation and why preeclampsia, a condition characterized by high soluble fms-like tyrosine kinase-1, is associated with inappropriately low aldosterone levels in spite of relatively lower plasma volumes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abnormal alveolar wound repair contributes to the development of pulmonary fibrosis after lung injury. Hepatocyte growth factor (HGF) is a potent mitogenic factor for alveolar epithelial cells and may therefore improve alveolar epithelial repair in vitro and in vivo. We hypothesized that HGF could increase alveolar epithelial repair in vitro and improve pulmonary fibrosis in vivo. Alveolar wound repair in vitro was determined using an epithelial wound repair model with HGF-transfected A549 alveolar epithelial cells. Electroporation-mediated, nonviral gene transfer of HGF in vivo was performed 7 days after bleomycin-induced lung injury in the rat. Alveolar epithelial repair in vitro was increased after transfection of wounded epithelial monolayers with a plasmid encoding human HGF, pCikhHGF [human HGF (hHGF) gene expressed from the cytomegalovirus (CMV) immediate-early promoter and enhancer] compared with medium control. Electroporation-mediated in vivo HGF gene transfer using pCikhHGF 7 days after intratracheal bleomycin reduced pulmonary fibrosis as assessed by histology and hydroxyproline determination 14 days after bleomycin compared with controls treated with the same vector not containing the HGF sequence (pCik). Lung epithelial cell proliferation was increased and apoptosis reduced in hHGF-treated lungs compared with controls, suggesting increased alveolar epithelial repair in vivo. In addition, profibrotic transforming growth factor-beta1 (TGF-beta1) was decreased in hHGF-treated lungs, indicating an involvement of TGF-beta1 in hHGF-induced reduction of lung fibrosis. In conclusion, electroporation-mediated gene transfer of hHGF decreases bleomycin-induced pulmonary fibrosis, possibly by increasing alveolar epithelial cell proliferation and reducing apoptosis, resulting in improved alveolar wound repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Focal osteochondral defects are still a challenging problem in joint surgery. We have developed a two-layered implant consisting of a basal porous beta-tricalcium phosphate (TCP) for bone reconstruction and a superficial fibrous collagen type I/III layer for cartilage regeneration. Fifty-four osteochondral defects in the trochlear groove of 27 Göttinger Minipigs were created and either left untreated, treated with the implant alone, or the implant augmented with an additional growth factor mixture, which was assumed to stimulate cell and tissue differentiation. Follow-up was 6, 12 and 52 weeks with n=6 for each group. The repair tissue was evaluated for its gross appearance and biomechanical properties. Histological sections were semi-quantitatively scored for their histomorphological structure. Treatment with the two-layered implant improved defect filling and subchondral bone repair at 6 and 12 weeks follow-up. The TCP was replaced by cancellous bone at 52 weeks. Cartilage repair tissue mainly consisted of fibrocartilage and showed a moderate cell density up to the joint surface. Growth factor treatment improved the mechanical and histomorphological properties of the cartilage repair tissue at 12, but not at 52 weeks postoperatively. In conclusion, the two-layered collagen-TCP implant augmented with chondroinductive growth factors seems a promising new option for the treatment of deep osteochondral defects in joint surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Cyclopentenone prostaglandins have been shown to promote osteoblast differentiation in vitro. The aim of this study was to examine in a rat model the effects of local delivery of Delta(12)-prostaglandin J(2) (Delta(12)-PGJ(2)) on new bone formation and growth factor expression in (i) cortical defects and (ii) around titanium implants. MATERIAL AND METHODS: Standardized transcortical defects were prepared bilaterally in the femur of 28 male Wistar rats. Ten microliters of Delta(12)-PGJ(2) at 4 concentrations (10(-9), 10(-7), 10(-5) and 10(-3) mol/l) in a collagen vehicle were delivered inside a half-cylindrical titanium chamber fixed over the defect. Contralateral defects served as vehicle controls. Ten days after surgery, the amount of new bone formation in the cortical defect area was determined by histomorphometry and expression of platelet-derived growth factor (PDGF)-A and -B, insulin-like growth factor (IGF)-I/II, bone morphogenetic protein (BMP)-2 and -6 was examined by immunohistochemistry. In an additional six rats, 24 titanium implants were inserted into the femur. Five microliters of carboxymethylcellulose alone (control) or with Delta(12)-PGJ(2) (10(-5) and 10(-3) mol/l) were delivered into surgically prepared beds prior to implant installation. RESULTS: Delta(12)-PGJ(2) (10(-5) and 10(-3) mol/l) significantly enhanced new bone formation (33%, P<0.05) compared with control cortical defects. Delivery of Delta(12)-PGJ(2) at 10(-3) mol/l significantly increased PDGF-A and -B and BMP-2 and -6 protein expression (P<0.05) compared with control defects. No significant difference was found in IGF-I/II expression compared with controls. Administration of Delta(12)-PGJ(2) also significantly increased endosteal new bone formation around implants compared with controls. CONCLUSION: Local delivery of Delta(12)-PGJ(2) promoted new bone formation in the cortical defect area and around titanium implants. Enhanced expression of BMP-2 and -6 as well as PDGF-A and -B may be involved in Delta(12)-PGJ(2)-induced new bone formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During development of the vertebrate vascular system essential signals are transduced via protein-tyrosine phosphorylation. Null-mutations of receptor-tyrosine kinase (RTK) genes expressed in endothelial cells (ECs) display early lethal vascular phenotypes. We aimed to identify endothelial protein-tyrosine phosphatases (PTPs), which should have similar importance in EC-biology. A murine receptor-type PTP was identified by a degenerated PCR cloning approach from endothelial cells (VE-PTP). By in situ hybridization this phosphatase was found to be specifically expressed in vascular ECs throughout mouse development. In experiments using GST-fusion proteins, as well as in transient transfections, trapping mutants of VE-PTP co-precipitated with the Angiopoietin receptor Tie-2, but not with the Vascular Endothelial Growth Factor receptor 2 (VEGFR-2/Flk-1). In addition, VE-PTP dephosphorylates Tie-2 but not VEGFR-2. We conclude that VE-PTP is a Tie-2 specific phosphatase expressed in ECs, and VE-PTP phosphatase activity serves to specifically modulate Angiopoietin/Tie-2 function. Based on its potential role as a regulator of blood vessel morphogenesis and maintainance, VE-PTP is a candidate gene for inherited vascular malformations similar to the Tie-2 gene.