926 resultados para fiber reinforced materials
Resumo:
Every year, the number of discarded electro-electronic products is increasing. For this reason recycling is needed, to avoid wasting non-renewable natural resources. The objective of this work is to study the recycling of materials from parallel wire cable through Unit operations of mineral processing. Parallel wire cables are basically composed of polymer and copper. The following unit operations were tested: grinding, size classification, dense medium separation, electrostatic separation, scrubbing, panning, and elutriation. It was observed that the operations used obtained copper and PVC concentrates with a low degree of cross contamination. It was Concluded that total liberation of the materials was accomplished after grinding to less than 3 mm, using a cage mill. Separation using panning and elutriation presented the best results in terms of recovery and cross contamination. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The elastic mechanical behavior of elastic materials is modeled by a pair of independent constants (Young`s modulus and Poisson`s coefficient). A precise measurement for both constants is necessary in some applications, such as the quality control of mechanical elements and standard materials used for the calibration of some equipment. Ultrasonic techniques have been used because wave velocity depends on the elastic properties of the propagation medium. The ultrasonic test shows better repeatability and accuracy than the tensile and indentation test. In this work, the theoretical and experimental aspects related to the ultrasonic through-transmission technique for the characterization of elastic solids is presented. Furthermore, an amorphous material and some polycrystalline materials were tested. Results have shown an excellent repeatability and numerical errors that are less than 3% in high-purity samples.
Resumo:
The microstructure and texture of melt-spun UNS S31803 (DIN W. Nr. 1. 4462) duplex stainless steel were analyzed after casting and solution treatment. The cast ribbons contained austenite (gamma) and ferrite (alpha or delta) with roughly equal compositions. The alpha and gamma had < 100 > and < 110 > partial fiber textures, respectively. After solution treatment, the texture was maintained, the amount of gamma phase increased, and the alloying elements were partitioned as expected, according to whether they were ferrite or austenite stabilizers. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Paper products show dimensional changes when subjected to moisture content modification. Hygroexpansivity was investigated in a commercial paper machine operating at 1256 m/min by a set of measurements on 75 g/m(2) reprographic bleached eucalyptus pulp paper samples. The present work shows hygroexpansivity development in different sections of the paper machine along the manufacturing direction. The measurement results demonstrate the effects of papermaking process operations on paper hygroexpansivity and lead to the confirmation of fiber orientation degree, drying restraint and shrinkage and paper tension as significant influencing factors. Structural, strength and elastic properties of paper were also measured as a function of machine direction position and presented for discussion purposes.
Resumo:
Effects of titanium carbide (TiC) addition on structural and magnetic properties of isotropic (Pr,Nd)-Fe-B nanocrystalline magnetic materials have been investigated. In this work, we investigate the effect of TiC addition on a (Pr,Nd)-poor and B-rich composition, as well as on a B-poor and (Nd, Pr)-rich composition. Rapidly solidified (Pr, Nd)-Fe-B alloys were prepared by melt-spinning. The compositions studied were (Pr(1-x)Nd(x))(4)Fe(78)B(18) (x = 0, 0.5, and 1) with addition of 3 at% TiC. Unlike the (Pr(x)Nd(1-x))(9.5)Fe(84.5)B(6) materials that present excellent values for coercive. field and energy product, the (Pr,Nd)-poor and B-rich composition alloys with TiC addition present lower values. Rietveld analysis of X-ray data and Mossbauer spectroscopy revealed that samples are predominantly composed of Fe(3)B and alpha-Fe. For the RE-rich compositions (Pr(x)Nd(1-x))(9.5)Fe(84.5)B(6) (x = 0.1, 0.25, 0.5, 0.75, and 1) with the addition of 3 at% TiC, the highest coercive field and energy product (8.4 kOe and 14.4 MGOe, respectively) were obtained for the composition Pr(9.5)Fe(84.5)B(6). (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This article reports the characteristics of blast furnace slag (BFS) pastes activated with hydrated lime (5%) and hydrated lime (2%) plus gypsum (6%) in relation to compressive strength, shrinkage (autogenous and drying) and microstructure (porosity, hydrated products). The paste mixtures were characterized using powder X-ray diffraction (XRD), mercury intrusion porosimetry (MIP) and thermogravimetric analysis (TG/DTG). BSF activated with lime and gypsum (LG) results in larger amounts of ettringite when compared with BFS activated with lime (L). Although the porosities of the L and LG mixtures were about the same, there was a greater pore refinement for the BFS activated with lime, with an increase in mesopores volume with age. The presence of ettringite and the higher volumes of macropores cause the compressive strength of BSF activated with hydrated lime plus gypsum to be smaller than that of BFS activated with lime. For both chemical activators, compressive strength developed slowly at early ages. Autogenous and drying shrinkage were greater for the BFS activated with lime, believed to result from the more refined porous structure in comparison with the mixture activated with gypsum plus lime. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work is the production and preliminary characterization of adsorbent new materials useful for sensor development. A new plasma chamber was simulated and designed in order to obtain multiple layers and/or composites in a single step. Plasma deposited organic fluorocompound and hexamethyldisilazane (HMDS) thin films were produced and tested as adsorbent layers. Chemical characterization used ellipsometry, Raman. infrared and X-ray photoelectron spectroscopy. Hydrophobic and oleophobic character were determined by contact angle measurements. Adsorption characteristics were evaluated using quartz crystal microbalance. Not only HMDS but also the fluorocompound can polymerize but intermixing and a double layer are only obtained in very narrow conditions. The films are adsorbent and mildly hydrophobic. Films deposited on a microchromatographic column can be used on sample pretreatment to remove and/or preconcentrate volatile organic Compounds. Therefore, with this approach it is possible to obtain films with different monomers on double layer or composites, with organic/inorganic materials or particles and use them on sample pretreatment for chemical analysis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Wood-water relationship of untreated and heat-treated wood was studied. Specimens of Eucalyptus grandis, E saligna, and E citriodora were submitted to five conditions of heat treatment: 180 degrees C and 220 degrees C with air; 220 degrees C, 250 degrees C, and 280 degrees C with N(2). The wood-water relationships were accurately studied in a special device, in which the moisture content (MC) of the sample was measured with a highly sensitive electronic microbalance placed in a climatic chamber. The dimensions of the sample were collected continuously without contact by means of two high-speed laser scan micrometers. Sorption curves and shrinkage-MC relationships were observed. To study the effects of heat treatment, the following parameters were also determined: fiber saturation point (FPS), wood anisotropy (T/R ratio), shrinkage slope, reduction in hygroscopicity, and anti-shrink efficiency (ASE). The physical properties were significantly affected only at 220 degrees C and above. At heat temperature levels higher than 220 degrees C, the reduction in hygroscopicity and ASE are higher than 40% and continue to be reduced with increasing temperature level. This work also demonstrates that heat treatment does not change the slope of the curves shrinkage vs. MC, proving that heat treatment affects the domain of alterations in wood properties, but not the behavior within this domain.
Resumo:
This study pursued an analysis of a modality of craftwork activity developed as an alternative for occupation and income using banana crop wastes. It is the banana fiber craftwork. The experience was developed in quilombola communities in the region of Vale do Ribeira, S (a) over tildeo Paulo State, Brazil. The correlation between the craftwork and other activities used as a source of income, like organic banana and other land crops, and rural tourism, was established. Using multifunctionality as a reference, it was intended to focus on the craftwork. activity within the dynamics of rural families in their territories, considering the economic, social, cultural and environmental issues involved in the quilombola`s activities. This permitted the evaluation of their contributions to the maintainance of the life conditions of these communities.
Resumo:
An experiment was implemented to study fluid flow in a pressure media. This procedure successfully combines nuclear magnetic resonance imaging with a pressure membrane chamber in order to visualize the non-wetting and wetting fluid flows with controlled boundary conditions. A specially designed pressure membrane chamber, made of non-magnetic materials and able to withstand 4 MPa, was designed and built for this purpose. These two techniques were applied to the drainage of Douglas fir sapwood. In the study of the longitudinal flow, narrow drainage fingers are formed in the latewood zones. They follow the longitudinal direction of wood and spread throughout the sample length. These fingers then enlarge in the cross-section plane and coalesce until drainage reaches the whole latewood part. At the end of the experiments, when the drainage of liquid water in latewood is completed, just a few sites of percolation appear in earlywood zones. This difference is a result of the wood anatomical structure, where pits, the apertures that allow the sap to flow between wood cells, are more easily aspirated in earlywood than in latewood. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
An enantioselective liquid chromatographic method using two-phase hollow fiber liquid-phase microextraction (HF-LPME-HPLC) was developed for the determination of isradipine (ISR) enantiomers and its main metabolite (pyridine derivative of isradipine, PDI) in microsomal fractions isolated from rat liver. The analytes were extracted from 1 mL of microsomal medium using a two-phase HF-LPME procedure with hexyl acetate as the acceptor phase, 30 min of extraction, and sample agitation at 1,500 rpm. For the first time, ISR enantiomers and PDI were resolved. For this separation, a ChiralpakA (R) AD column with hexane/2-propanol/ethanol (94:04:02, v/v/v) as the mobile phase at a flow rate of 1.5 mL min(-1) was used. The column was kept at 23 A +/- 2 A degrees C. The drug and metabolite detection was performed at 325 nm and the internal standard oxybutynin was detected at 225 nm. The recoveries were 23% for PDI and 19% for each ISR enantiomer. The method presented quantification limits (LOQ) of 50 ng mL(-1) and was linear over the concentration range of 50-5,000 and 50-2,500 ng mL(-1) for PDI and each ISR enantiomer, respectively. The validated method was employed to an in vitro biotransformation study of ISR using rat liver microsomal fraction showing that (+)-(S)-ISR is preferentially biotransformed.
Resumo:
A three-phase hollow-fiber liquid-phase microextraction method for the analysis of rosiglitazone and its metabolites N-desmethyl rosiglitazone and p-hydroxy rosiglitazone in microsomal preparations is described for the first time. The drug and metabolites HPLC determination was carried out using an X-Terra RP-18 column, at 22 degrees C. The mobile phase was composed of water, acetonitrile and acetic acid (85:15:0.5, v/v/v) and the detection was performed at 245 nm. The hollow-fiber liquid-phase microextraction procedure was optimized using multifactorial experiments and the following optimal condition was established: sample agitation at 1750 rpm, extraction for 30 min, hydrochloric acid 0.01 mol/L as acceptor phase, 1-octanol as organic phase, and donor phase pH adjustment to 8.0. The recovery rates, obtained by using 1 mL of microsomal preparation, were 47-70%. The method presented LOQs of 50 ng/mL and it was linear over the concentration range of 50-6000 ng/mL, with correlation coefficients (r) higher than 0.9960, for all analytes. The validated method was employed to study the in vitro biotransformation of rosiglitazone using rat liver microsomal fraction.
Resumo:
We investigate the modulational instability of plane waves in quadratic nonlinear materials with linear and nonlinear quasi-phase-matching gratings. Exact Floquet calculations, confirmed by numerical simulations, show that the periodicity can drastically alter the gain spectrum but never completely removes the instability. The low-frequency part of the gain spectrum is accurately predicted by an averaged theory and disappears for certain gratings. The high-frequency part is related to the inherent gain of the homogeneous non-phase-matched material and is a consistent spectral feature.
Resumo:
It is possible to remedy certain difficulties with the description of short wave length phenomena and interfacial slip in standard models of a laminated material by considering the bending stiffness of the layers. If the couple or moment stresses are assumed to be proportional to the relative deformation gradient, then the bending effect disappears for vanishing interface slip, and the model correctly reduces to an isotropic standard continuum. In earlier Cosserat-type models this was not the case. Laminated materials of the kind considered here occur naturally as layered rock, or at a different scale, in synthetic layered materials and composites. Similarities to the situation in regular dislocation structures with couple stresses, also make these ideas relevant to single slip in crystalline materials. Application of the theory to a one-dimensional model for layered beams demonstrates agreement with exact results at the extremes of zero and infinite interface stiffness. Moreover, comparison with finite element calculations confirm the accuracy of the prediction for intermediate interfacial stiffness.