868 resultados para fast scan voltammetric determinations
Resumo:
While many developed countries have invested heavily in research on plant invasions over the last 50 years, the immense region of Latin America has made little progress. Recognising this, a group of scientists working on plant invasions in Latin America met in Chile in late 2010 to develop a research agenda for the region based on lessons learned elsewhere. Our three main findings are as follows. (1) Globalisation is inevitable, but the resultant plant introductions can be slowed or prevented by effective quarantine and early intervention. Development of spatially explicit inventories, research on the invasion process and weed risk assessments can help prioritise and streamline action. (2) Eradication has limited application for plants and control is expensive and requires strict prioritisation and careful planning and evaluation. (3) Accepting the concept of novel ecosystems, new combinations of native and introduced species that no longer depend on human intervention, may help optimise invasive species management. Our vision of novel ecosystem management is through actions that: (a) maintain as much native biodiversity and ecosystem functionality as possible, (b) minimise management intervention to invasives with known impact, and (c) maximise the area of intervention. We propose the creation of a Latin American Invasive Plants Network to help focus the new research agenda for member countries. The network would coordinate research and training and establish funding priorities, develop and strengthen tools to share knowledge, and raise awareness at the community, governmental and intergovernmental levels about the social, economic and environmental costs of plant invasions.
Resumo:
Modifications in low-density lipoprotein (LDL) have emerged as a major pathogenic factor of atherosclerosis, which is the main cause of morbidity and mortality in the western world. Measurements of the heat diffusivity of human LDL solutions in their native and in vitro oxidized states are presented by using the Z-Scan (ZS) technique. Other complementary techniques were used to obtain the physical parameters necessary to interpret the optical results, e. g., pycnometry, refractometry, calorimetry, and spectrophotometry, and to understand the oxidation phase of LDL particles. To determine the sample's thermal diffusivity using the thermal lens model, an iterative one-parameter fitting method is proposed which takes into account several characteristic ZS time-dependent and the position-dependent transmittance measurements. Results show that the thermal diffusivity increases as a function of the LDL oxidation degree, which can be explained by the increase of the hydroperoxides production due to the oxidation process. The oxidation products go from one LDL to another, disseminating the oxidation process and caring the heat across the sample. This phenomenon leads to a quick thermal homogenization of the sample, avoiding the formation of the thermal lens in highly oxidized LDL solutions. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.10.105003]
Resumo:
In this study we investigate the singlet excited state absorption of lutetium bisphthalocyanine (LuPc2) over a wide spectral range. It was observed distinct nonlinear absorption behaviors; saturable (SA) and reverse saturable absorption (RSA). The RSA effect was observed below 640 and above 680 nm, while SA occurs around the Q-band region, located around 660 nm. To describe the main singlet-singlet transitions, we employed the rate equation model considering the simplified three-energy level diagram. Our results reveal a ratio between excited and ground state absorption smaller than 0.05 at the Q-band region, and of approximately 4 for the other regions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Abstract Background In tropical countries, losses caused by bovine tick Rhipicephalus (Boophilus) microplus infestation have a tremendous economic impact on cattle production systems. Genetic variation between Bos taurus and Bos indicus to tick resistance and molecular biology tools might allow for the identification of molecular markers linked to resistance traits that could be used as an auxiliary tool in selection programs. The objective of this work was to identify QTL associated with tick resistance/susceptibility in a bovine F2 population derived from the Gyr (Bos indicus) × Holstein (Bos taurus) cross. Results Through a whole genome scan with microsatellite markers, we were able to map six genomic regions associated with bovine tick resistance. For most QTL, we have found that depending on the tick evaluation season (dry and rainy) different sets of genes could be involved in the resistance mechanism. We identified dry season specific QTL on BTA 2 and 10, rainy season specific QTL on BTA 5, 11 and 27. We also found a highly significant genome wide QTL for both dry and rainy seasons in the central region of BTA 23. Conclusions The experimental F2 population derived from Gyr × Holstein cross successfully allowed the identification of six highly significant QTL associated with tick resistance in cattle. QTL located on BTA 23 might be related with the bovine histocompatibility complex. Further investigation of these QTL will help to isolate candidate genes involved with tick resistance in cattle.
Resumo:
Abstract Introduction Pelvicalyceal cysts are common findings in autopsies and can manifest with a variety of patterns. These cystic lesions are usually a benign entity with no clinical significance unless they enlarge enough to cause compression of the adjacent collecting system and consequently obstructive uropathy. Few cases of the spontaneous rupture of pelvicalyceal renal cysts have been published and to the best of our knowledge there is no report of a combined rupture to collector system and retroperitoneal space documented during a multiphase computed tomography. Case presentation We report a case of a ‘real-time’ spontaneous rupture of a pelvicalyceal cyst into the collecting system with fistulization into the retroperitoneum. The patient was a 78-year-old Caucasian man with a previous history of renal stones and a large pelvicalyceal renal cyst who was admitted to our Emergency department with acute right flank pain. A multiphase computed tomography was performed and the pre-contrast images demonstrated a right pelvicalyceal renal cyst measuring 12.0 × 6.1cm in the lower pole causing moderate dilation of the upper right renal collection system. In addition, a partially obstructive stone on the left distal ureter with mild left hydronephrosis was noted. The nephrographic phase did not add any new information. The excretory phase (10-minute delay) demonstrated a spontaneous rupture of the cyst into the pelvicalyceal system with posterior fistulization into the retroperitoneal space. Conclusion In this case study we present time-related changes of a rare pelvicalyceal cyst complication, which to the best of our knowledge has fortunately not been previously documented. Analysis of the sequential images and comparison with an earlier scan allowed us to better understand the physiopathological process of the rupture, the clinical presentation and to elaborate hypotheses for its etiopathogenesis.
Resumo:
A simple and fast method for the determination of Ca, Cu, Fe, Mg, Mn, Se and Zn in bovine semen by quadrupole inductively coupled plasma spectrometry (q-ICP-MS) is described. Prior to analysis, samples (200 µL) were diluted 1:50 in a solution containing 0.01% v/v Triton® X-100 and 0.5% v/v nitric acid and directly analyzed by ICP-MS. The limits of detection of the method are 0.3, 0.03, 0.2, 0.04, 0.04, 0.03 and 0.03 µg L-1 for 44Ca, 63Cu, 57Fe, 24Mg, 64Zn, 82Se and 55Mn, respectively. For purposes of comparison and method validation, four ordinary bovine semen samples were directly analyzed by ICP-MS and by flame atomic absorption spectrometry (FAAS) or graphite furnace atomic absorption spectrometry (GF AAS), with no statistical difference between the techniques at the 95% level when applying the t-test. Then, the proposed method was applied in the determinations of Ca, Cu, Fe, Mg, Mn, Se and Zn in collected samples of bovine semen from different breeds, which are used in reproduction programs and artificial insemination.
Resumo:
In recent years, structural composites manufactured by carbon fiber/epoxy laminates have been employed in large scale in aircraft industries. These structures require high strength under severe temperature changes of -56° until 80 °C. Regarding this scenario, the aim of this research was to reproduce thermal stress in the laminate plate developed by temperature changes and tracking possible cumulative damages on the laminate using ultrasonic C-scan inspection. The evaluation was based on attenuation signals and the C-scan map of the composite plate. The carbon fiber/epoxy plain weave laminate underwent temperatures of -60° to 80 °C, kept during 10 minutes and repeated for 1000, 2000, 3000 and 4000 times. After 1000 cycles, the specimens were inspected by C-scanning. A few changes in the laminate were observed using the inspection methodology only in specimens cycled 3000 times, or so. According to the found results, the used temperature range did not present enough conditions to cumulative damage in this type of laminate, which is in agreement with the macro - and micromechanical theory.
Resumo:
Given a large image set, in which very few images have labels, how to guess labels for the remaining majority? How to spot images that need brand new labels different from the predefined ones? How to summarize these data to route the user’s attention to what really matters? Here we answer all these questions. Specifically, we propose QuMinS, a fast, scalable solution to two problems: (i) Low-labor labeling (LLL) – given an image set, very few images have labels, find the most appropriate labels for the rest; and (ii) Mining and attention routing – in the same setting, find clusters, the top-'N IND.O' outlier images, and the 'N IND.R' images that best represent the data. Experiments on satellite images spanning up to 2.25 GB show that, contrasting to the state-of-the-art labeling techniques, QuMinS scales linearly on the data size, being up to 40 times faster than top competitors (GCap), still achieving better or equal accuracy, it spots images that potentially require unpredicted labels, and it works even with tiny initial label sets, i.e., nearly five examples. We also report a case study of our method’s practical usage to show that QuMinS is a viable tool for automatic coffee crop detection from remote sensing images.
Resumo:
The present PhD thesis summarizes the three-years study about the neutronic investigation of a new concept nuclear reactor aiming at the optimization and the sustainable management of nuclear fuel in a possible European scenario. A new generation nuclear reactor for the nuclear reinassance is indeed desired by the actual industrialized world, both for the solution of the energetic question arising from the continuously growing energy demand together with the corresponding reduction of oil availability, and the environment question for a sustainable energy source free from Long Lived Radioisotopes and therefore geological repositories. Among the Generation IV candidate typologies, the Lead Fast Reactor concept has been pursued, being the one top rated in sustainability. The European Lead-cooled SYstem (ELSY) has been at first investigated. The neutronic analysis of the ELSY core has been performed via deterministic analysis by means of the ERANOS code, in order to retrieve a stable configuration for the overall design of the reactor. Further analyses have been carried out by means of the Monte Carlo general purpose transport code MCNP, in order to check the former one and to define an exact model of the system. An innovative system of absorbers has been conceptualized and designed for both the reactivity compensation and regulation of the core due to cycle swing, as well as for safety in order to guarantee the cold shutdown of the system in case of accident. Aiming at the sustainability of nuclear energy, the steady-state nuclear equilibrium has been investigated and generalized into the definition of the ``extended'' equilibrium state. According to this, the Adiabatic Reactor Theory has been developed, together with a New Paradigm for Nuclear Power: in order to design a reactor that does not exchange with the environment anything valuable (thus the term ``adiabatic''), in the sense of both Plutonium and Minor Actinides, it is required indeed to revert the logical design scheme of nuclear cores, starting from the definition of the equilibrium composition of the fuel and submitting to the latter the whole core design. The New Paradigm has been applied then to the core design of an Adiabatic Lead Fast Reactor complying with the ELSY overall system layout. A complete core characterization has been done in order to asses criticality and power flattening; a preliminary evaluation of the main safety parameters has been also done to verify the viability of the system. Burn up calculations have been then performed in order to investigate the operating cycle for the Adiabatic Lead Fast Reactor; the fuel performances have been therefore extracted and inserted in a more general analysis for an European scenario. The present nuclear reactors fleet has been modeled and its evolution simulated by means of the COSI code in order to investigate the materials fluxes to be managed in the European region. Different plausible scenarios have been identified to forecast the evolution of the European nuclear energy production, including the one involving the introduction of Adiabatic Lead Fast Reactors, and compared to better analyze the advantages introduced by the adoption of new concept reactors. At last, since both ELSY and the ALFR represent new concept systems based upon innovative solutions, the neutronic design of a demonstrator reactor has been carried out: such a system is intended to prove the viability of technology to be implemented in the First-of-a-Kind industrial power plant, with the aim at attesting the general strategy to use, to the largest extent. It was chosen then to base the DEMO design upon a compromise between demonstration of developed technology and testing of emerging technology in order to significantly subserve the purpose of reducing uncertainties about construction and licensing, both validating ELSY/ALFR main features and performances, and to qualify numerical codes and tools.
Resumo:
The main aims of my PhD research work have been the investigation of the redox, photophysical and electronic properties of carbon nanotubes (CNT) and their possible uses as functional substrates for the (electro)catalytic production of oxygen and as molecular connectors for Quantum-dot Molecular Automata. While for CNT many and diverse applications in electronics, in sensors and biosensors field, as a structural reinforcing in composite materials have long been proposed, the study of their properties as individual species has been for long a challenging task. CNT are in fact virtually insoluble in any solvent and, for years, most of the studies has been carried out on bulk samples (bundles). In Chapter 2 an appropriate description of carbon nanotubes is reported, about their production methods and the functionalization strategies for their solubilization. In Chapter 3 an extensive voltammetric and vis-NIR spectroelectrochemical investigation of true solutions of unfunctionalized individual single wall CNT (SWNT) is reported that permitted to determine for the first time the standard electrochemical potentials of reduction and oxidation as a function of the tube diameter of a large number of semiconducting SWNTs. We also established the Fermi energy and the exciton binding energy for individual tubes in solution and, from the linear correlation found between the potentials and the optical transition energies, one to calculate the redox potentials of SWNTs that are insufficiently abundant or absent in the samples. In Chapter 4 we report on very efficient and stable nano-structured, oxygen-evolving anodes (OEA) that were obtained by the assembly of an oxygen evolving polyoxometalate cluster, (a totally inorganic ruthenium catalyst) with a conducting bed of multiwalled carbon nanotubes (MWCNT). Here, MWCNT were effectively used as carrier of the polyoxometallate for the electrocatalytic production of oxygen and turned out to greatly increase both the efficiency and stability of the device avoiding the release of the catalysts. Our bioinspired electrode addresses the major challenge of artificial photosynthesis, i.e. efficient water oxidation, taking us closer to when we might power the planet with carbon-free fuels. In Chapter 5 a study on surface-active chiral bis-ferrocenes conveniently designed in order to act as prototypical units for molecular computing devices is reported. Preliminary electrochemical studies in liquid environment demonstrated the capability of such molecules to enter three indistinguishable oxidation states. Side chains introduction allowed to organize them in the form of self-assembled monolayers (SAM) onto a surface and to study the molecular and redox properties on solid substrates. Electrochemical studies on SAMs of these molecules confirmed their attitude to undergo fast (Nernstian) electron transfer processes generating, in the positive potential region, either the full oxidized Fc+-Fc+ or the partly oxidized Fc+-Fc species. Finally, in Chapter 6 we report on a preliminary electrochemical study of graphene solutions prepared according to an original procedure recently described in the literature. Graphene is the newly-born of carbon nanomaterials and is certainly bound to be among the most promising materials for the next nanoelectronic generation.
Resumo:
Flüchtige organische Bestandteile (engl.: VOC) sind in der Atmosphäre in Spuren vorhanden, spielen aber trotzdem eine wichtige Rolle in der Luftchemie: sie beeinflussen das Ozon der Troposphäre, städtischen Smog, Oxidationskapazität und haben direkte und indirekte Auswirkungen auf die globale Klimaveränderung. Eine wichtige Klasse der VOC sind die Nicht-Methan-Kohlenwasserstoffe (engl.: NMHC), die überwiegend von anthropogenen Quellen kommen. Aus diesem Grund ist für Luftchemiker ein Messinstrument nötig, das die VOC, die NMHC eingeschlossen, mit einer höheren Zeitauflösung misst, besonders für Echtzeitmessungen an Bord eines Forschungsflugzeuges. Dafür wurde das System zur schnellen Beobachtung von organischen Spuren (engl.: FOTOS) entworfen, gebaut für den Einsatz in einem neuen Wissenschaftlichen Flugzeug, das in großen Höhen und über weite Strecken fliegt, genannt HALO. In der Folge wurde FOTOS in zwei Messkampagnen am Boden getestet. FOTOS wurde entworfen und gebaut mit einem speziell angefertigten, automatisierten, kryogenen Probensystem mit drei Fallen und einem angepassten, erworbenen schnellen GC-MS. Ziel dieses Aufbaus war es, die Vielseitigkeit zu vergrößern und das Störungspotential zu verringern, deshalb wurden keine chemischen Trocknungsmittel oder adsorbierenden Stoffe verwendet. FOTOS erreichte eine Probenfrequenz von 5.5 Minuten, während es mindestens 13 verschiedene C2- bis C5-NMHC maß. Die Drei-Sigma-Detektionsgrenze für n- und iso-Pentan wurde als 2.6 und 2.0 pptv ermittelt, in dieser Reihenfolge. Labortests bestätigten, dass FOTOS ein vielseitiges, robustes, hochautomatisiertes, präzises, genaues, empfindliches Instrument ist, geeignet für Echtzeitmessungen von VOC in Probenfrequenzen, die angemessen sind für ein Forschungsflugzeug wie HALO. Um die Leistung von FOTOS zu bestätigen, wurde vom 26. Januar bis 4. Februar 2010 ein Zwischenvergleich gemacht mit dem GC-FID-System am Meteorologischen Observatorium Hohenpeißenberg, einer WMO-GAW-globalen Station. Dreizehn verschiedene NMHC wurden innerhalb des Rahmens der GWA Data Quality Objectives (DQO) analysiert und verglichen. Mehr als 80% der Messungen von sechs C3- bis C5-NMHC erfüllten diese DQO. Diese erste Messkampagne im Feld hob die Robustheit und Messgenauigkeit von FOTOS hervor, zusätzlich zu dem Vorteil der höheren Probenfrequenz, sogar in einer Messung am Boden. Um die Möglichkeiten dieses Instrumentes im Feld zu zeigen, maß FOTOS ausgewählte leichte NMHC während einer Messkampagne im Borealen Waldgebiet, HUMPPA-COPEC 2010. Vom 12. Juli bis zum 12. August 2010 beteiligte sich eine internationale Gruppe von Instituten und Instrumenten an Messungen physikalischer und chemischer Größen der Gas- und Partikelphasen der Luft über dem Borealen Wald an der SMEAR II-Station nahe Hyyttiälä, Finnland. Es wurden mehrere Hauptpunkte von Interesse im Mischungsverhältnis der Alkane und im Isomerenverhätnis von Pentan identifiziert, insbesondere sehr unterschiedliche Perioden niedriger und hoher Variabilität, drei Rauchschwaden von Biomassen-Verbrennung von russischen Waldbränden und zwei Tage mit extrem sauberer Luft aus der Polarregion. Vergleiche der NMHC mit anderen anthropogenen Indikatoren zeigten mehrere Quellen anthropogener Einflüsse am Ort auf und erlaubten eine Unterscheidung zwischen lokalen und weiter entfernten Quellen. Auf einen minimalen natürlichen Beitrag zum 24h-Kreislauf von NOx wurde geschlussfolgert aus der Korrelation von NOx mit Alkanen. Altersschätzungen der Luftmassen durch das Isomerenverhältnis von Pentan wurden erschwert durch sich verändernde Verhältnisse der Quellen und durch Besonderheiten der Photochemie während des Sommers im hohen Norden. Diese Messungen zeigten den Wert des Messens leichter NMHC, selbst in abgelegenen Regionen, als einen zusätzlichen spezifischen Marker von anthropogenem Einfluss.