982 resultados para expressing negativity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Topical transcutaneous immunization (TCI) presents many clinical advantages, but its underlying mechanism remains unknown. TCI induced Ag-specific IgA Ab-secreting cells expressing CCR9 and CCR10 in the small intestine in a retinoic acid-dependent manner. These intestinal IgA Abs were maintained in Peyer\'s patch-null mice but abolished in the Peyer\'s patch- and lymph node-null mice. The mesenteric lymph node (MLN) was shown to be the site of IgA isotype class switching after TCI. Unexpectedly, langerin(+)CD8alpha(-) dendritic cells emerged in the MLN after TCI; they did not migrate from the skin but rather differentiated rapidly from bone marrow precursors. Depletion of langerin(+) cells impaired intestinal IgA Ab responses after TCI. Taken together, these findings suggest that MLN is indispensable for the induction of intestinal IgA Abs following skin immunization and that cross-talk between the skin and gut immune systems might be mediated by langerin(+) dendritic cells in the MLN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type III galactosaemia is a hereditary disease caused by reduced activity in the Leloir pathway enzyme, UDP-galactose 4'-epimerase (GALE). Traditionally, the condition has been divided into two forms-a mild, or peripheral, form and a severe, or generalized, form. Recently it has become apparent that there are disease states which are intermediate between these two extremes. Three mutations associated with this intermediate form (S81R, T150M and P293L) were analysed for their kinetic and structural properties in vitro and their effects on galactose-sensitivity of Saccharomyces cerevisiae cells that were deleted for the yeast GALE homologue Gal10p. All three mutations result in impairment of the kinetic parameters (principally the turnover number, k(cat)) compared with the wild-type enzyme. However, the degree of impairment was mild compared with that seen with the mutation (V94M) associated with the generalized form of epimerase deficiency galactosaemia. None of the three mutations tested affected the ability of the protein to dimerize in solution or its susceptibility to limited proteolysis in vitro. Finally, in the yeast model, each of the mutated patient alleles was able to complement the galactose-sensitivity of gal10 Delta cells as fully as was the wild-type human allele. Furthermore, there was no difference from control in metabolite profile following galactose exposure for any of these strains. Thus we conclude that the subtle biochemical and metabolic abnormalities detected in patients expressing these GALE alleles likely reflect, at least in part, the reduced enzymatic activity of the encoded GALE proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To prepare a nanoparticulate formulation expressing variable peripheral carboxyl density using non-endcapped and endcapped poly(lactide-co-glycolide), conjugated to antibodies recognising the siglec-7 receptor, which is expressed on most acute myeloid leukaemias. The aim is to exploit this receptor as a therapeutic target by constructing an internalising drug-loaded nanoparticle able to
translocate into cytoplasm by siglec receptor-mediated internalisation.

Materials and Methods: Antibodies to the siglec-7 (CD33-like) receptor were conjugated to dye-loaded nanoparticles using carbodiimide chemistry, giving 32.6 mg protein per mg of nanoparticles using 100% of the non-endcapped PLGA. Binding studies using cognate antigen were used to verify preservation of antibody function following conjugation.

Results: Mouse embryonic fibroblasts expressing recombinant siglec-7 receptor and exposed to NileRed-loaded nanoparticles conjugated to antibody accumulated intracellular fluorescence, which was not observed if either antibody or siglec-7 receptor was absent. Confocal microscopy revealed internalised perinuclear cytoplasmic staining, with an Acridine Orange-based analysis showing red staining in localised foci, indicating localisation within acidic endocytic compartments.

Conclusions: Results show antibody-NP constructs are internalised via siglec-7 receptor-mediated internalisation. If loaded with a therapeutic agent, antibody-NP constructs can cross into cytoplasmic
space and delivery drugs intracellularly to cells expressing CD33-like receptors, such as natural killer cells and monocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multidrug resistance (NIDR) is a major problem in the chemotherapeutic treatment of cancer. Overexpression of the multidrug resistance-associated protein 1 (MRP1), is associated with NIDR in certain tumors. A number of MRP1-specific MAbs, which facilitate both clinical and experimental investigations of this protein, are available. To add to this panel of existing antibodies, we have now generated an additional MRP1-specific monoclonal antibody (MAb), P2A8(6), which detects a unique heat stable epitope on the MRP1 molecule. Female Wistar rats were immunized via footpad injections with a combination of two short synthetic peptides corresponding to amino acids 235-246 (peptide A) and 246-260 (peptide B) of the MRP1 protein. Immune reactive B cells were then isolated from the popliteal lymph nodes for fusion with SP2/O-Ag14 myeloma cells. Resultant hybridoma supernatants were screened for MRP1-specific antibody production. Antibody P2A8(6) was characterized by Western blotting and immunocytochemistry on paired multidrug resistant (MRP1 overexpressing) and sensitive parental cell lines. The antibody detects a protein of 190 kDa in MRP1-expressing cell lines but not in MRP2- or MRP3-transfected cell lines. P2A8(6) stains drug-selected and MRP1-transfected cell lines homogeneously by immunocytochemistry and recognizes MRP1 by immunohistochemistry on formalin-fixed paraffin wax-embedded tissue sections. Peptide inhibition studies confirm that P2AS(6) reacts with peptide B (amino acids 246-260), therefore recognizing a different epitope from that of all currently available MRP1 MAbs. This new MAb, chosen for its specificity to the MRP1 protein, may be a useful addition to the currently available range of MRP1-specific MAbs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucose-dependent insulinotropic polypeptide (GIP) has significant potential in diabetes therapy due to its ability to serve as a glucose-dependent activator of insulin secretion. However, its biological activity is severely compromised by the ubiquitous enzyme dipeptidylpeptidase IV (DPP IV), which removes the N-terminal Tyr(1)-Ala(2) dipeptide from GIP. Therefore, 2 novel N-terminal Ala(2)-substituted analogs of GIP, with Ala substituted by 2-aminobutyric acid (Abu) or sarcosine (Sar), were synthesized and tested for metabolic stability and biological activity both in vitro and in vivo. Incubation with DPP IV gave half-lives for degradation of native GIP, (Abu(2))GIP, and (Sar(2))GIP to be 2.3, 1.9, and 1.6 hours, respectively, while in human plasma, the half-lives were 6.2, 7.6, and 5.4 hours, respectively. In Chinese hamster lung (CHL) cells expressing the cloned human GIP receptor, native GIP, (Abu(2))GIP, and (Sar(2))GIP dose-dependently stimulated cyclic adenosine monophosphate (camp) production with EC50 values of 18.2, 38.5, and 54.6 nmol/L, respectively. In BRIN-BD11 cells, both (Abu(2))GIP and (Sar(2))GIP (10(-13) to 10(-8) mol/L) dose-dependently stimulated insulin secretion with significantly enhanced effects at 16.7 mmol/L compared with 5.6 mmol/L glucose. In obese diabetic (ob/ob) mice, GIP and (Sar(2))GIP significantly increased (1.4-fold to 1.5-fold; P <.05) plasma insulin concentrations, whereas (Abu(2))GIP exerted only minor effects. Changes in plasma glucose were small reflecting the severe insulin resistance of this mutant. The present data show that substitution of the penultimate N-terminal Ala(2) in GIP by Abu or Sar results in analogs with moderately reduced metabolic stability and biological activity in vitro, but with preserved biological activity in vivo. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucose-dependent insulinotropic polypeptide (GIP) is an important incretin hormone, which potentiates glucose-induced insulin secretion. Antihyperglycaemic actions of GIP provide significant potential in Type 11 diabetes therapy. However, inactivation of GIP by the enzyme dipeptidyl peptidase IV (DPP IV) and its consequent short circulating half-life limit its therapeutic use. Therefore two novel Tyr(1)-Modified analogues of GIP, N-Fmoc-GIP (where Fmoc is 9-fluorenylmethoxycarbonyl) and N-palmitate-GIP, were synthesized and tested for metabolic stability and biological activity. Both GIP analogues were resistant to degradation by DPP IV and human plasma. In Chinese hamster lung (CHL) cells expressing the cloned human GIP receptor, both analogues exhibited a 2-fold increase in cAMP-generating potency compared with native GIP (EC50 values of 9.4, 10.0 and 18.2 nM respectively). Using clonal BRIN-BD11 cells, both analogues demonstrated strong insulinotropic activity compared with native GIP (P <0.01 to P <0.001). In obese diabetic (ob/ob) mice, administration of N-Fmoc-GIP or N-palmitate-GIP (25 nmol/kg) together with glucose (18 mmol/kg) significantly reduced the peak 15 min glucose excursion (1.4- and 1.5-fold respectively; P <0.05 to P <0.01) compared with glucose alone. The area under the curve (AUC) for glucose was significantly lower after administration of either analogue compared with glucose administered alone or in combination with native GIP (1.5-fold; P <0.05). This was associated with a significantly greater AUC for insulin (2.1-fold; P <0.001) for both analogues compared with native GIP. A similar pattern of in vivo responsiveness was evident in lean control mice. These data indicate that novel N-terminal Tyr(1) modification of GIP with an Fmoc or palmitate group confers resistance to degradation by DPP IV in plasma, which is reflected by increased in vitro potency and greater insulinotropic and antihyperglycaemic activities in an animal model of Type 11 diabetes mellitus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel N-terminally substituted Pro(3) analogue of glucose-dependent insulinotropic polypeptide (GIP) was synthesized and tested for plasma stability and biological activity both in vitro and in vivo. Native GIP was rapidly degraded by human plasma with only 39 +/- 6% remaining intact after 8 h, whereas (Pro(3))GIP was completely stable even after 24 h. In CHL cells expressing the human GIP receptor, (Pro(3))GIP antagonized the cyclic adenosine monophosphate (cAMP) stimulatory ability of 10(-7)M native GIP, with an IC50 value of 2.6 muM. In the clonal pancreatic beta cell line BRIN-BD11, (Pro(3))GIP over the concentration range 10(-13) to 10(-8) M dose dependently inhibited GIP-stimulated (10(-7) M) insulin release (1.2- to 1.7-fold; P <0.05 to P <0.001). In obese diabetic (ob/ob) mice, intraperitoneal administration of (Pro(3))GIP (25 nmol/kg body wt) countered the ability of native GIP to stimulate plasma insulin (2.4-fold decrease; P <0.001) and lower the glycemic excursion (1.5-fold decrease; P <0.001) induced by a glucose load (18 mmol/kg body wt). Collectively these data demonstrate that (Pro(3))GIP is a novel and potent enzyme-resistant GIP receptor antagonist capable of blocking the ability of native GIP to increase cAMP, stimulate insulin secretion, and improve glucose homeostasis in a commonly employed animal model of type 2 diabetes. (C) 2002 Elsevier Science (USA).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The kinetic resolution of racemic sulfoxides by dimethyl sulfoxide (DMSO) reductases was investigated with a range of microorganisms. Three bacterial isolates (provisionally identified as Citrobacter braakii, Klebsiella sp. and Serratia sp.) expressing DMSO reductase activity were isolated from environmental samples by anaerobic enrichment with DMSO as terminal electron acceptor. The organisms reduced a diverse range of racemic sulfoxides to yield either residual enantiomer depending upon the strain used. C. braakii DMSO-11 exhibited wide substrate specificity that included dialkyl, diaryl and alkylaryl sulfoxides, and was unique in its ability to reduce the thiosulfinate 1,4-dihydrobenzo-2, 3-dithian-2-oxide. DMSO reductase was purified from the periplasmic fraction of C. braakii DMSO-11 and was used to demonstrate unequivocally that the DMSO reductase was responsible for enantiospecific reductive resolution of racemic sulfoxides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Explaining the uniqueness of the acquired somatic JAK2 V617F mutation, which is present in more than 95% of polycythemia vera patients, has been a challenge. The V617F mutation in the pseudokinase domain of JAK2 renders the unmutated kinase domain constitutively active. We have performed random mutagenesis at position 617 of JAK2 and tested each of the 20 possible amino acids for ability to induce constitutive signaling in Ba/F3 cells expressing the erythropoietin receptor. Four JAK2 mutants, V617W, V617M, V617I, and V617L, were able to induce cytokine independence and constitutive downstream signaling. Only V617W induced a level of constitutive activation comparable with V617F. Also, only V617W stabilized tyrosine-phosphorylated suppressor of cytokine signaling 3 ( SOCS3), a mechanism by which JAK2 V617F overcomes inhibition by SOCS3. The V617W mutant induced a myeloproliferative disease in mice, mainly characterized by erythrocytosis and megakaryocytic proliferation. Although JAK2 V617W would predictably be pathogenic in humans, the substitution of the Val codon, GTC, by TTG, the codon for Trp, would require three base pair changes, and thus it is unlikely to occur. We discuss how the predicted conformations of the activated JAK2 mutants can lead to better screening assays for novel small molecule inhibitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

JAK2 V617F, identified in the majority of patients with myeloproliferative neoplasms, tyrosine phosphorylates SOCS3 and escapes its inhibition. Here, we demonstrate that the JAK2 exon 12 mutants described in a subset of V617F-negative MPN cases, also stabilize tyrosine phosphorylated SOCS3. SOCS3 tyrosine phosphorylation was also observed in peripheral blood mononuclear cells and granulocytes isolated from patients with JAK2 H538QK539L or JAY2 F537-K539delinsL mutations. JAK kinase inhibitors, which effectively inhibited the proliferation of cells expressing V617F or K539L, also caused a dose-dependent reduction in both mutant JAK2 and SOCS3 tyrosine phosphorylation. We propose, therefore, that SOCS3 tyrosine phosphorylation may be a novel bio-marker of myeloproliferative neoplasms resulting from a JAK2 mutation and a potential reporter of effective JAK2 inhibitor therapy currently in clinical development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

3-Phosphoinositide-dependent protein kinase-1 (PDK1) appears to play a central regulatory role in many cell signalings between phosphoinositide-3 kinase and various intracellular serine/threonine kinases. In resting cells, PDK1 is known to be constitutively active and is further activated by tyrosine phosphorylation (Tyr(9) and Tyr(373/376)) following the treatment of the cell with insulin or pervanadate. However, little is known about the mechanisms for this additional activation of PDK1. Here, we report that the SH2 domain of Src, Crk, and GAP recognized tyrosine-phosphorylated PDK1 in vitro. Destabilization of PDK1 induced by geldanamycin (a Hsp90 inhibitor) was partially blocked in HEK 293 cells expressing PDK1- Y9F. Co-expression of Hsp90 enhanced PDK1-Src complex formation and led to further increased PDK1 activity toward PKB and SGK. Immunohistochemical analysis with anti- phospho-Tyr9 antibodies showed that the level of Tyr9 phosphorylation was markedly increased in tumor samples compared with normal. Taken together, these data suggest that phosphorylation of PDK1 on Tyr9, distinct from Tyr373/376, is important for PDK1/Src complex formation, leading to PDK1 activation. Furthermore, Tyr9 phosphorylation is critical for the stabilization of both PDK1 and the PDK1/Src complex via Hsp90-mediated protection of PDK1 degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently several different JAK2 exon12 mutations have been identified in V617F negative polycythaemia vera (PV) or idiopathic erythrocytosis (IE) patients. The patients present with erythrocytosis, ligand-independent cell growth and low serum erythropoietin (EPO) levels. Within this group, a deletion of amino acids 542-543 (N542-E543del) of JAK2 is most prevalent. We have previously shown that in the presence of JAK2(V617F), suppressor of cytokine signalling 3 (SOCS3) is unable to negatively regulate EPO signalling and proliferation of V617F-expressing cells. Here we report a PV patient heterozygous for the somatic JAK2(N542-E543del) mutation and a previously unreported germline mutation within the SH2 domain of SOCS3 (F136L). Interestingly, the SOCS3(F136L) mutation was detected in a Japanese myeloproliferative disorder patient cohort at double the frequency of healthy controls. Cells expressing SOCS3(F136L) had markedly elevated EPO-induced proliferation and extended EPO-induced JAK2 phosphorylation. Additionally, compared to wild-type SOCS3, mutant SOCS3 had an extended half-life in the presence of JAK2 and JAK2(N542-E543del). Our findings suggest that this loss-of-function SOCS3 mutation may have contributed to disease onset by causing deregulated JAK2 signalling in the presence of a constitutively active JAK2(N542-E543del) mutant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AIMS: Cell-based gene therapy is an alternative to viral and non-viral gene therapy. Emerging evidence suggests that mesenchymal stem cells (MSC) are able to migrate to sites of tissue injury and have immunosuppressive properties that may be useful in targeted gene therapy for sustained specific tissue engraftment. METHODS: In this study, we injected intravenously (i.v.) 1x10(6) MSC, isolated from green fluorescent protein (GFP) transgenic rats, into Rif-1 fibrosarcoma-bearing C3H/HeN mice. The MSC had been infected using a lentiviral vector to express stably the luciferase reporter gene (MSC-GFP-luci). An in vivo imaging system (IVIS 200) and Western blotting techniques were used to detect the distribution of MSC-GFP-luci in tumor-bearing animals. RESULTS: We observed that xenogenic MSC selectively migrated to the tumor site, proliferated and expressed the exogenous gene in subcutaneous fibrosarcoma transplants. No MSC distribution was detected in other organs, such as the liver, spleen, colon and kidney. We further showed that the FGF2/FGFR pathways may play a role in the directional movement of MSC to the Rif-1 fibrosarcoma. We performed in vitro co-culture and in vivo tumor growth analysis, showing that MSC did not affect the proliferation of Rif-1 cells and fibrosarcoma growth compared with an untreated control group. Finally, we demonstrated that the xenogenic MSC stably expressing inducible nitric oxide synthase (iNOS) protein transferred by a lentivirus-based system had a significant inhibitory effect on the growth of Rif-1 tumors compared with MSC alone and the non-treatment control group. CONCLUSIONS: iNOS delivered by genetically modified iNOS-MSC showed a significant anti-tumor effect both in vitro and in vivo. MSC may be used as a target gene delivery vehicle for the treatment of fibrosarcoma and other tumors