887 resultados para expert elicited
Resumo:
BACKGROUND. Physical symptoms are common in pregnancy and are predominantly associated with normal physiological changes. These symptoms have a social and economic cost, leading to absenteeism from work and additional medical interventions. There is currently no simple method for identifying common pregnancy related problems in the antenatal period. A validated tool, for use by pregnancy care providers would be useful. AIM: The aim of the project was to develop and validate a Pregnancy Symptoms Inventory for use by healthcare professionals (HCPs). METHODS: A list of symptoms was generated via expert consultation with midwives and obstetrician gynaecologists. Focus groups were conducted with pregnant women in their first, second or third trimester. The inventory was then tested for face validity and piloted for readability and comprehension. For test-re-test reliability, it was administered to the same women 2 to 3 days apart. Finally, outpatient midwives trialled the inventory for 1 month and rated its usefulness on a 10cm visual analogue scale (VAS). The number of referrals to other health care professionals was recorded during this month. RESULTS: Expert consultation and focus group discussions led to the generation of a 41-item inventory. Following face validity and readability testing, several items were modified. Individual item test re-test reliability was between .51 to 1 with the majority (34 items) scoring .0.70. During the testing phase, 211 surveys were collected in the 1 month trial. Tiredness (45.5%), poor sleep (27.5%) back pain (19.5%) and nausea (12.6%) were experienced often. Among the women surveyed, 16.2% claimed to sometimes or often be incontinent. Referrals to the incontinence nurse increased > 8 fold during the study period. The median rating by midwives of the ‘usefulness’ of the inventory was 8.4 (range 0.9 to 10). CONCLUSIONS: The Pregnancy Symptoms Inventory (PSI) was well accepted by women in the 1 month trial and may be a useful tool for pregnancy care providers and aids clinicians in early detection and subsequent treatment of symptoms. It shows promise for use in the research community for assessing the impact of lifestyle intervention in pregnancy.
Resumo:
Estimating and predicting degradation processes of engineering assets is crucial for reducing the cost and insuring the productivity of enterprises. Assisted by modern condition monitoring (CM) technologies, most asset degradation processes can be revealed by various degradation indicators extracted from CM data. Maintenance strategies developed using these degradation indicators (i.e. condition-based maintenance) are more cost-effective, because unnecessary maintenance activities are avoided when an asset is still in a decent health state. A practical difficulty in condition-based maintenance (CBM) is that degradation indicators extracted from CM data can only partially reveal asset health states in most situations. Underestimating this uncertainty in relationships between degradation indicators and health states can cause excessive false alarms or failures without pre-alarms. The state space model provides an efficient approach to describe a degradation process using these indicators that can only partially reveal health states. However, existing state space models that describe asset degradation processes largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires that failures and inspections only happen at fixed intervals. The discrete state assumption entails discretising continuous degradation indicators, which requires expert knowledge and often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This research proposes a Gamma-based state space model that does not have discrete time, discrete state, linear and Gaussian assumptions to model partially observable degradation processes. Monte Carlo-based algorithms are developed to estimate model parameters and asset remaining useful lives. In addition, this research also develops a continuous state partially observable semi-Markov decision process (POSMDP) to model a degradation process that follows the Gamma-based state space model and is under various maintenance strategies. Optimal maintenance strategies are obtained by solving the POSMDP. Simulation studies through the MATLAB are performed; case studies using the data from an accelerated life test of a gearbox and a liquefied natural gas industry are also conducted. The results show that the proposed Monte Carlo-based EM algorithm can estimate model parameters accurately. The results also show that the proposed Gamma-based state space model have better fitness result than linear and Gaussian state space models when used to process monotonically increasing degradation data in the accelerated life test of a gear box. Furthermore, both simulation studies and case studies show that the prediction algorithm based on the Gamma-based state space model can identify the mean value and confidence interval of asset remaining useful lives accurately. In addition, the simulation study shows that the proposed maintenance strategy optimisation method based on the POSMDP is more flexible than that assumes a predetermined strategy structure and uses the renewal theory. Moreover, the simulation study also shows that the proposed maintenance optimisation method can obtain more cost-effective strategies than a recently published maintenance strategy optimisation method by optimising the next maintenance activity and the waiting time till the next maintenance activity simultaneously.
Resumo:
In open railway markets, coordinating train schedules at an interchange station requires negotiation between two independent train operating companies to resolve their operational conflicts. This paper models the stakeholders as software agents and proposes an agent negotiation model to study their interaction. Three negotiation strategies have been devised to represent the possible objectives of the stakeholders, and they determine the behavior in proposing offers to the proponent. Empirical simulation results confirm that the use of the proposed negotiation strategies lead to outcomes that are consistent with the objectives of the stakeholders.
Resumo:
Information overload has become a serious issue for web users. Personalisation can provide effective solutions to overcome this problem. Recommender systems are one popular personalisation tool to help users deal with this issue. As the base of personalisation, the accuracy and efficiency of web user profiling affects the performances of recommender systems and other personalisation systems greatly. In Web 2.0, the emerging user information provides new possible solutions to profile users. Folksonomy or tag information is a kind of typical Web 2.0 information. Folksonomy implies the users‘ topic interests and opinion information. It becomes another source of important user information to profile users and to make recommendations. However, since tags are arbitrary words given by users, folksonomy contains a lot of noise such as tag synonyms, semantic ambiguities and personal tags. Such noise makes it difficult to profile users accurately or to make quality recommendations. This thesis investigates the distinctive features and multiple relationships of folksonomy and explores novel approaches to solve the tag quality problem and profile users accurately. Harvesting the wisdom of crowds and experts, three new user profiling approaches are proposed: folksonomy based user profiling approach, taxonomy based user profiling approach, hybrid user profiling approach based on folksonomy and taxonomy. The proposed user profiling approaches are applied to recommender systems to improve their performances. Based on the generated user profiles, the user and item based collaborative filtering approaches, combined with the content filtering methods, are proposed to make recommendations. The proposed new user profiling and recommendation approaches have been evaluated through extensive experiments. The effectiveness evaluation experiments were conducted on two real world datasets collected from Amazon.com and CiteULike websites. The experimental results demonstrate that the proposed user profiling and recommendation approaches outperform those related state-of-the-art approaches. In addition, this thesis proposes a parallel, scalable user profiling implementation approach based on advanced cloud computing techniques such as Hadoop, MapReduce and Cascading. The scalability evaluation experiments were conducted on a large scaled dataset collected from Del.icio.us website. This thesis contributes to effectively use the wisdom of crowds and expert to help users solve information overload issues through providing more accurate, effective and efficient user profiling and recommendation approaches. It also contributes to better usages of taxonomy information given by experts and folksonomy information contributed by users in Web 2.0.
Resumo:
Interaction Design is a fast developing branch of Industrial Design. The availability of cheap microprocessors and sensor electronics allow interactions between people and products that were until recently impossible. This has added additional layers of complexity to the design process. Novice designers find it difficult to effectively juggle these complexities and typically tend to focus on one aspect at a time. They also tend to take a linear, step-by-step approach to the design process in contrast to expert designers who pursue “parallel lines of thought” whilst simultaneously co-evolving both problem and solution. (Lawson, 1993) This paper explores an approach that encourages designers (in this case novice designers) to take a parallel rather than linear approach to the design process. It also addresses the problem of social loafing that tends to occur in team activities.
Resumo:
Scholars of local government have repeatedly lamented the lack of literature on the subject (e.g., Mowbray 1997; Pini, Previte, Haslam & McKenzie 2007). As Dollery, Marshall and Worthington (2003: 1) have commented, local government has often been the ‘poor cousin of its more exalted relatives in terms of the attention it attracts from the research community.’ The exalted relatives Dollery et al. (2003) refer to are national political environments, where women’s participation has elicited significant attention. However, the dearth of research on the specific subject of women’s representation in local government is rarely acknowledged (Neyland & Tucker 1996; Whip & Fletcher 1999). This edited book attempts to redress this situation. Each chapter applies an explicit gender analysis to their specific topic of focus, making ‘gender visible in social phenomenon; [and] asking if, how, and why social processes, standards, and opportunities differ systematically for women and men’ (Howard, Risman & Sprague 2003: 1). These analyses in the local government context are critical for understanding the extent and nature of balanced representation at all levels of government. Furthermore, some women start their elective careers serving on school boards, city or town councils or as mayors, before progressing to state and national legislative offices. Hence, the experiences of women in local government illustrate broader notions of democracy and may for some individual women, shape their opportunities further along the political pipeline.
Resumo:
Over recent years a significant amount of research has been undertaken to develop prognostic models that can be used to predict the remaining useful life of engineering assets. Implementations by industry have only had limited success. By design, models are subject to specific assumptions and approximations, some of which are mathematical, while others relate to practical implementation issues such as the amount of data required to validate and verify a proposed model. Therefore, appropriate model selection for successful practical implementation requires not only a mathematical understanding of each model type, but also an appreciation of how a particular business intends to utilise a model and its outputs. This paper discusses business issues that need to be considered when selecting an appropriate modelling approach for trial. It also presents classification tables and process flow diagrams to assist industry and research personnel select appropriate prognostic models for predicting the remaining useful life of engineering assets within their specific business environment. The paper then explores the strengths and weaknesses of the main prognostics model classes to establish what makes them better suited to certain applications than to others and summarises how each have been applied to engineering prognostics. Consequently, this paper should provide a starting point for young researchers first considering options for remaining useful life prediction. The models described in this paper are Knowledge-based (expert and fuzzy), Life expectancy (stochastic and statistical), Artificial Neural Networks, and Physical models.
Resumo:
In 2008, a three-year pilot ‘pay for performance’ (P4P) program, known as ‘Clinical Practice Improvement Payment’ (CPIP) was introduced into Queensland Health (QHealth). QHealth is a large public health sector provider of acute, community, and public health services in Queensland, Australia. The organisation has recently embarked on a significant reform agenda including a review of existing funding arrangements (Duckett et al., 2008). Partly in response to this reform agenda, a casemix funding model has been implemented to reconnect health care funding with outcomes. CPIP was conceptualised as a performance-based scheme that rewarded quality with financial incentives. This is the first time such a scheme has been implemented into the public health sector in Australia with a focus on rewarding quality, and it is unique in that it has a large state-wide focus and includes 15 Districts. CPIP initially targeted five acute and community clinical areas including Mental Health, Discharge Medication, Emergency Department, Chronic Obstructive Pulmonary Disease, and Stroke. The CPIP scheme was designed around key concepts including the identification of clinical indicators that met the set criteria of: high disease burden, a well defined single diagnostic group or intervention, significant variations in clinical outcomes and/or practices, a good evidence, and clinician control and support (Ward, Daniels, Walker & Duckett, 2007). This evaluative research targeted Phase One of implementation of the CPIP scheme from January 2008 to March 2009. A formative evaluation utilising a mixed methodology and complementarity analysis was undertaken. The research involved three research questions and aimed to determine the knowledge, understanding, and attitudes of clinicians; identify improvements to the design, administration, and monitoring of CPIP; and determine the financial and economic costs of the scheme. Three key studies were undertaken to ascertain responses to the key research questions. Firstly, a survey of clinicians was undertaken to examine levels of knowledge and understanding and their attitudes to the scheme. Secondly, the study sought to apply Statistical Process Control (SPC) to the process indicators to assess if this enhanced the scheme and a third study examined a simple economic cost analysis. The CPIP Survey of clinicians elicited 192 clinician respondents. Over 70% of these respondents were supportive of the continuation of the CPIP scheme. This finding was also supported by the results of a quantitative altitude survey that identified positive attitudes in 6 of the 7 domains-including impact, awareness and understanding and clinical relevance, all being scored positive across the combined respondent group. SPC as a trending tool may play an important role in the early identification of indicator weakness for the CPIP scheme. This evaluative research study supports a previously identified need in the literature for a phased introduction of Pay for Performance (P4P) type programs. It further highlights the value of undertaking a formal risk assessment of clinician, management, and systemic levels of literacy and competency with measurement and monitoring of quality prior to a phased implementation. This phasing can then be guided by a P4P Design Variable Matrix which provides a selection of program design options such as indicator target and payment mechanisms. It became evident that a clear process is required to standardise how clinical indicators evolve over time and direct movement towards more rigorous ‘pay for performance’ targets and the development of an optimal funding model. Use of this matrix will enable the scheme to mature and build the literacy and competency of clinicians and the organisation as implementation progresses. Furthermore, the research identified that CPIP created a spotlight on clinical indicators and incentive payments of over five million from a potential ten million was secured across the five clinical areas in the first 15 months of the scheme. This indicates that quality was rewarded in the new QHealth funding model, and despite issues being identified with the payment mechanism, funding was distributed. The economic model used identified a relative low cost of reporting (under $8,000) as opposed to funds secured of over $300,000 for mental health as an example. Movement to a full cost effectiveness study of CPIP is supported. Overall the introduction of the CPIP scheme into QHealth has been a positive and effective strategy for engaging clinicians in quality and has been the catalyst for the identification and monitoring of valuable clinical process indicators. This research has highlighted that clinicians are supportive of the scheme in general; however, there are some significant risks that include the functioning of the CPIP payment mechanism. Given clinician support for the use of a pay–for-performance methodology in QHealth, the CPIP scheme has the potential to be a powerful addition to a multi-faceted suite of quality improvement initiatives within QHealth.
Clinical education for nephrology nurse practitioner candidates in Australia : a consensus statement
Resumo:
Objectives: To develop recommendations for the clinical education required to prepare Australian Nurse Practitioner candidates for advanced and extended practice in nephrology settings. Methods: Using the Delphi research technique a consensus statement was developed over a nine month period. All endorsed and candidate Nephrology Nurse Practitioners (NNP) were invited to participate as the expert panel. The Delphi research technique uses a systematic and iterative process. The expert panel were asked to generate a list of items which were then circulated to all NNPs. They were asked to determine their degree of agreement or disagreement with each statement using a 5-point Likert scale There was opportunity for free-text comments to be provided if desired. Results from each round were collated; the document was refined and circulated to the experts for a subsequent round. Consensus was demonstrated after three Delphi rounds. Results: The consensus statement comprises four components explaining the role and membership of the mentorship team, the setting and location of NNP clinical education, learning strategies to support the NNP, and outcomes of NNP clinical education. Demographic questions in the final survey revealed information about the qualifications, years of experience, and practice location of Australian NNPs. Conclusions: The consensus statement is not prescriptive but it will inform NNP candidates, university course providers and mentors about the expected extended nephrology specific clinical education that will enable the NNP to provide advanced nursing care for patients regardless of the stage of chronic kidney disease (CKD) and the practice setting.
Resumo:
This paper presents an approach to predict the operating conditions of machine based on classification and regression trees (CART) and adaptive neuro-fuzzy inference system (ANFIS) in association with direct prediction strategy for multi-step ahead prediction of time series techniques. In this study, the number of available observations and the number of predicted steps are initially determined by using false nearest neighbor method and auto mutual information technique, respectively. These values are subsequently utilized as inputs for prediction models to forecast the future values of the machines’ operating conditions. The performance of the proposed approach is then evaluated by using real trending data of low methane compressor. A comparative study of the predicted results obtained from CART and ANFIS models is also carried out to appraise the prediction capability of these models. The results show that the ANFIS prediction model can track the change in machine conditions and has the potential for using as a tool to machine fault prognosis.
Resumo:
This paper presents a fault diagnosis method based on adaptive neuro-fuzzy inference system (ANFIS) in combination with decision trees. Classification and regression tree (CART) which is one of the decision tree methods is used as a feature selection procedure to select pertinent features from data set. The crisp rules obtained from the decision tree are then converted to fuzzy if-then rules that are employed to identify the structure of ANFIS classifier. The hybrid of back-propagation and least squares algorithm are utilized to tune the parameters of the membership functions. In order to evaluate the proposed algorithm, the data sets obtained from vibration signals and current signals of the induction motors are used. The results indicate that the CART–ANFIS model has potential for fault diagnosis of induction motors.