888 resultados para end-to-end
Resumo:
Rats learn to prefer flavors associated with postingestive effects of nutrients. The physiological signals underlying this postingestive reward are unknown. We have previously shown that rats readily learn to prefer a flavor that was consumed early in a multi-flavored meal when glucose is infused intragastrically (IG), suggesting rapid postingestive reward onset. The present experiments investigate the timing of postingestive fat reward, by providing distinctive flavors in the first and second halves of meals accompanied by IG fat infusion. Learning stronger preference for the earlier or later flavor would indicate when the rewarding postingestive effects are sensed. Rats consumed sweetened, calorically-dilute flavored solutions accompanied by IG high-fat infusion (+ sessions) or water (- sessions). Each session included an "Early" flavor for 8min followed by a "Late" flavor for 8min. Learned preferences were then assessed in two-bottle tests (no IG infusion) between Early(+) vs. Early(-), Late(+) vs. Late(-), Early(+) vs. Late(+), and Early(-) vs. Late(-). Rats only preferred Late(+), not Early(+), relative to their respective (-) flavors. In a second experiment rats trained with a higher fat concentration learned to prefer Early(+) but more strongly preferred Late(+). Learned preferences were evident when rats were tested deprived or recently satiated. Unlike with glucose, ingested fat appears to produce a slower-onset rewarding signal, detected later in a meal or after its termination, becoming more strongly associated with flavors towards the end of the meal. This potentially contributes to enhanced liking for dessert foods, which persists even when satiated.
Resumo:
End-stage ankle arthritis is operatively treated with numerous designs of total ankle replacement and different techniques for ankle fusion. For superior comparison of these procedures, outcome research requires a classification system to stratify patients appropriately. A postoperative 4-type classification system was designed by 6 fellowship-trained foot and ankle surgeons. Four surgeons reviewed blinded patient profiles and radiographs on 2 occasions to determine the interobserver and intraobserver reliability of the classification. Excellent interobserver reliability (κ = .89) and intraobserver reproducibility (κ = .87) were demonstrated for the postoperative classification system. In conclusion, the postoperative Canadian Orthopaedic Foot and Ankle Society (COFAS) end-stage ankle arthritis classification system appears to be a valid tool to evaluate the outcome of patients operated for end-stage ankle arthritis.
Resumo:
Catheter ablation of ventricular tachycardia (VT) is effective and particularly useful in patients with frequent defibrillator interventions. Various substrate modification techniques have been described for unmappable or hemodynamically intolerable VT. Noninducibility is the most frequently used end point but is associated with significant limitations, so the optimal end point remains unclear. We hypothesized that elimination of local abnormal ventricular activities (LAVAs) during sinus rhythm or ventricular pacing would be a useful and effective end point for substrate-based VT ablation. As an adjunct to this strategy, we used a new high-density mapping catheter and frequently used epicardial mapping.
Resumo:
In this work electrophoretically mediated micro-analysis (EMMA) is used in conjunction with short end injection to improve the in-capillary Jaffé assay for creatinine. Key advances over prior work include (i) using simulation to ensure intimate overlap of reagent plugs, (ii) using OH- to drive the reaction, (iii) using short-end injection to minimize analysis time and in-line product degradation. The potential-driven overlapping time with the EMMA approach, as well as the borate buffer background electrolyte (BGE) concentration and pH are optimized with the short end approach. The best conditions for short-end analyses would not have been predicted by the prior long end work, owing to a complex interplay of separation time and product degradation rates. Raw peak areas and flow-adjusted peak areas for the Jaffé reaction product (at 505 nm) are used to assess the sensitivity of the short-end EMMA approach. Optimal overlap conditions depend heavily on local conductivity differences within the reagent zone(s), as these differences cause dramatic voltage field differences, which effect reagent overlap dynamics. Simul 5.0, a dynamic simulation program for capillary electrophoresis (CE) systems, is used to understand the ionic boundaries and profiles that give rise to the experimentally obtained data for EMMA analysis. Overall, fast migration of hydroxide ions from the picrate zone makes difficult reagent overlap. In addition, the challenges associated with the simultaneous overlapping of three reagent zones are considered, and experimental results validate the predictions made by the simulation. With one set of “optimized” conditions including OH- (253 mM) as the third reagent zone the response was linear with creatinine concentration (R2 = 0.998) and reproducible over the clinically relevant range (0.08 to 0.1 mM) of standard creatinine concentrations. An LOD (S/N = 3) of 0.02 mM and LOQ (S/N=10) of 0.08 mM were determined. A significant improvement (43%) in assay sensitivity was obtained compared to prior work that considered only two reagents in the overlap.
Resumo:
BACKGROUND: This study was undertaken to determine whether use of the direct renin inhibitor aliskiren would reduce cardiovascular and renal events in patients with type 2 diabetes and chronic kidney disease, cardiovascular disease, or both. METHODS: In a double-blind fashion, we randomly assigned 8561 patients to aliskiren (300 mg daily) or placebo as an adjunct to an angiotensin-converting-enzyme inhibitor or an angiotensin-receptor blocker. The primary end point was a composite of the time to cardiovascular death or a first occurrence of cardiac arrest with resuscitation; nonfatal myocardial infarction; nonfatal stroke; unplanned hospitalization for heart failure; end-stage renal disease, death attributable to kidney failure, or the need for renal-replacement therapy with no dialysis or transplantation available or initiated; or doubling of the baseline serum creatinine level. RESULTS: The trial was stopped prematurely after the second interim efficacy analysis. After a median follow-up of 32.9 months, the primary end point had occurred in 783 patients (18.3%) assigned to aliskiren as compared with 732 (17.1%) assigned to placebo (hazard ratio, 1.08; 95% confidence interval [CI], 0.98 to 1.20; P=0.12). Effects on secondary renal end points were similar. Systolic and diastolic blood pressures were lower with aliskiren (between-group differences, 1.3 and 0.6 mm Hg, respectively) and the mean reduction in the urinary albumin-to-creatinine ratio was greater (between-group difference, 14 percentage points; 95% CI, 11 to 17). The proportion of patients with hyperkalemia (serum potassium level, ≥6 mmol per liter) was significantly higher in the aliskiren group than in the placebo group (11.2% vs. 7.2%), as was the proportion with reported hypotension (12.1% vs. 8.3%) (P<0.001 for both comparisons). CONCLUSIONS: The addition of aliskiren to standard therapy with renin-angiotensin system blockade in patients with type 2 diabetes who are at high risk for cardiovascular and renal events is not supported by these data and may even be harmful. (Funded by Novartis; ALTITUDE ClinicalTrials.gov number, NCT00549757.).
Resumo:
The aim was to investigate the effect of different speech tasks, i.e. recitation of prose (PR), alliteration (AR) and hexameter (HR) verses and a control task (mental arithmetic (MA) with voicing of the result on end-tidal CO2 (PETCO2), cerebral hemodynamics and oxygenation. CO2 levels in the blood are known to strongly affect cerebral blood flow. Speech changes breathing pattern and may affect CO2 levels. Measurements were performed on 24 healthy adult volunteers during the performance of the 4 tasks. Tissue oxygen saturation (StO2) and absolute concentrations of oxyhemoglobin ([O2Hb]), deoxyhemoglobin ([HHb]) and total hemoglobin ([tHb]) were measured by functional near-infrared spectroscopy (fNIRS) and PETCO2 by a gas analyzer. Statistical analysis was applied to the difference between baseline before the task, 2 recitation and 5 baseline periods after the task. The 2 brain hemispheres and 4 tasks were tested separately. A significant decrease in PETCO2 was found during all 4 tasks with the smallest decrease during the MA task. During the recitation tasks (PR, AR and HR) a statistically significant (p < 0.05) decrease occurred for StO2 during PR and AR in the right prefrontal cortex (PFC) and during AR and HR in the left PFC. [O2Hb] decreased significantly during PR, AR and HR in both hemispheres. [HHb] increased significantly during the AR task in the right PFC. [tHb] decreased significantly during HR in the right PFC and during PR, AR and HR in the left PFC. During the MA task, StO2 increased and [HHb] decreased significantly during the MA task. We conclude that changes in breathing (hyperventilation) during the tasks led to lower CO2 pressure in the blood (hypocapnia), predominantly responsible for the measured changes in cerebral hemodynamics and oxygenation. In conclusion, our findings demonstrate that PETCO2 should be monitored during functional brain studies investigating speech using neuroimaging modalities, such as fNIRS, fMRI to ensure a correct interpretation of changes in hemodynamics and oxygenation.
Resumo:
Our understanding of regional filling of the lung and regional ventilation distribution is based on studies using stepwise inhalation of radiolabelled tracer gases, magnetic resonance imaging and positron emission tomography. We aimed to investigate whether these differences in ventilation distribution at different end-expiratory levels (EELs) and tidal volumes (V (T)s) held also true during tidal breathing. Electrical impedance tomography (EIT) measurements were performed in ten healthy adults in the right lateral position. Five different EELs with four different V (T)s at each EEL were tested in random order, resulting in 19 combinations. There were no measurements for the combination of the highest EEL/highest V (T). EEL and V (T) were controlled by visual feedback based on airflow. The fraction of ventilation directed to different slices of the lung (VENT(RL1)-VENT(RL8)) and the rate of the regional filling of each slice versus the total lung were analysed. With increasing EEL but normal tidal volume, ventilation was preferentially distributed to the dependent lung and the filling of the right and left lung was more homogeneous. With increasing V (T) and maintained normal EEL (FRC), ventilation was preferentially distributed to the dependent lung and regional filling became more inhomogeneous (p < 0.05). We could demonstrate that regional and temporal ventilation distribution during tidal breathing was highly influenced by EEL and V (T).
Resumo:
In chronic haemodialysis patients, anaemia is a frequent finding associated with high therapeutic costs and further expenses resulting from serial laboratory measurements. HemoHue HH1, HemoHue Ltd, is a novel tool consisting of a visual scale for the noninvasive assessment of anaemia by matching the coloration of the conjunctiva with a calibrated hue scale. The aim of the study was to investigate the usefulness of HemoHue in estimating individual haemoglobin concentrations and binary treatment outcomes in haemodialysis patients. A prospective blinded study with 80 hemodialysis patients comparing the visual haemoglobin assessment with the standard laboratory measurement was performed. Each patient's haemoglobin concentration was estimated by seven different medical and nonmedical observers with variable degrees of clinical experience on two different occasions. The estimated population mean was close to the measured one (11.06 ± 1.67 versus 11.32 ± 1.23 g/dL, P < 0.0005). A learning effect could be detected. Relative errors in individual estimates reached, however, up to 50%. Insufficient performance in predicting binary outcomes (ROC AUC: 0.72 to 0.78) and poor interrater reliability (Kappa < 0.6) further characterised this method.
Resumo:
We present a Rare Earth Elements (REE) record determined on the EPICA ice core drilled at Dronning Maud Land (EDML) in the Atlantic sector of the East Antarctic Plateau. The record covers the transition from the last glacial stage (LGS) to the early Holocene (26 600–7500 yr BP) at decadal to centennial resolution. Additionally, samples from potential source areas (PSAs) for Antarctic dust were analyzed for their REE characteristics. The dust provenance is discussed by comparing the REE fingerprints in the ice core and the PSA samples. We find a shift in variability in REE composition at ~15 000 yr BP in the ice core samples. Before 15 000 yr BP, the dust composition is very uniform and its provenance was most certainly dominated by a South American source. After 15 000 yr BP, multiple sources such as Australia and New Zealand become relatively more important, although South America remains the major dust source. A similar change in the dust characteristics was observed in the EPICA Dome C ice core at around ~15 000 yr BP, accompanied by a shift in the REE composition, thus suggesting a change of atmospheric circulation in the Southern Hemisphere.
Resumo:
In an effort to increase the density of sequence-based markers for the horse genome we generated 9473 BAC end sequences (BESs) from the CHORI-241 BAC library with an average read length of 677 bp. BLASTN searches with the BESs revealed 4036 meaningful hits (E
Resumo:
Cyclical recruitment of atelectasis with each breath is thought to contribute to ventilator-associated lung injury. Extrinsic positive end-expiratory pressure (PEEPe) can maintain alveolar recruitment at end exhalation, but PEEPe depresses cardiac output and increases overdistension. Short exhalation times can also maintain end-expiratory recruitment, but if the mechanism of this recruitment is generation of intrinsic PEEP (PEEPi), there would be little advantage compared with PEEPe. In seven New Zealand White rabbits, we compared recruitment from increased respiratory rate (RR) to recruitment from increased PEEPe after saline lavage. Rabbits were ventilated in pressure control mode with a fraction of inspired O(2) (Fi(O(2))) of 1.0, inspiratory-to-expiratory ratio of 2:1, and plateau pressure of 28 cmH(2)O, and either 1) high RR (24) and low PEEPe (3.5) or 2) low RR (7) and high PEEPe (14). We assessed cyclical lung recruitment with a fast arterial Po(2) probe, and we assessed average recruitment with blood gas data. We measured PEEPi, cardiac output, and mixed venous saturation at each ventilator setting. Recruitment achieved by increased RR and short exhalation time was nearly equivalent to recruitment achieved by increased PEEPe. The short exhalation time at increased RR, however, did not generate PEEPi. Cardiac output was increased on average 13% in the high RR group compared with the high PEEPe group (P < 0.001), and mixed venous saturation was consistently greater in the high RR group (P < 0.001). Prevention of end-expiratory derecruitment without increased end-expiratory pressure suggests that another mechanism, distinct from intrinsic PEEP, plays a role in the dynamic behavior of atelectasis.
Resumo:
More than 375,000 BAC-end sequences (BES) of the CHORI-243 ovine BAC library have been deposited in public databases. blastn searches with these BES against HSA18 revealed 1806 unique and significant hits. We used blastn-anchored BES for an in silico prediction of gene content and chromosome assignment of comparatively mapped ovine BAC clones. Ovine BES were selected at approximately 1.3-Mb intervals of HSA18 and incorporated into a human-sheep comparative map. An ovine 5000-rad whole-genome radiation hybrid panel (USUoRH5000) was typed with 70 markers, all of which mapped to OAR23. The resulting OAR23 RH map included 43 markers derived from BES with high and unique BLAST hits to the sequence of the orthologous HSA18, nine EST-derived markers, 16 microsatellite markers taken from the ovine linkage map and two bovine microsatellite markers. Six new microsatellite markers derived from the 43 mapped BES and the two bovine microsatellite markers were linkage-mapped using the International Mapping Flock (IMF). Thirteen additional microsatellite markers were derived from other ovine BES with high and unique BLAST hits to the sequence of the orthologous HSA18 and also positioned on the ovine linkage map but not incorporated into the OAR23 RH map. This resulted in 24 markers in common and in the same order between the RH and linkage maps. Eight of the BES-derived markers were mapped using fluorescent in situ hybridization (FISH), to thereby align the RH and cytogenetic maps. Comparison of the ovine chromosome 23 RH map with the HSA18 map identified and localized three major breakpoints between HSA18 and OAR23. The positions of these breakpoints were equivalent to those previously shown for syntenic BTA24 and HSA18. This study presents evidence for the usefulness of ovine BES when constructing a high-resolution comprehensive map for a single sheep chromosome. The comparative analysis confirms and refines knowledge about chromosomal conservation and rearrangements between sheep, cattle and human. The constructed RH map demonstrates the resolution and utility of the newly constructed ovine RH panel.
Resumo:
BACKGROUND: Although most clinical trials of coronary stents have measured nominally identical safety and effectiveness end points, differences in definitions and timing of assessment have created confusion in interpretation. METHODS AND RESULTS: The Academic Research Consortium is an informal collaboration between academic research organizations in the United States and Europe. Two meetings, in Washington, DC, in January 2006 and in Dublin, Ireland, in June 2006, sponsored by the Academic Research Consortium and including representatives of the US Food and Drug Administration and all device manufacturers who were working with the Food and Drug Administration on drug-eluting stent clinical trial programs, were focused on consensus end point definitions for drug-eluting stent evaluations. The effort was pursued with the objective to establish consistency among end point definitions and provide consensus recommendations. On the basis of considerations from historical legacy to key pathophysiological mechanisms and relevance to clinical interpretability, criteria for assessment of death, myocardial infarction, repeat revascularization, and stent thrombosis were developed. The broadly based consensus end point definitions in this document may be usefully applied or recognized for regulatory and clinical trial purposes. CONCLUSION: Although consensus criteria will inevitably include certain arbitrary features, consensus criteria for clinical end points provide consistency across studies that can facilitate the evaluation of safety and effectiveness of these devices.
Resumo:
INTRODUCTION: It has been suggested that infants dynamically regulate their tidal flow and end-expiratory volume level. The interaction between muscle activity, flow and lung volume in spontaneously sleeping neonates is poorly studied, since it requires the assessment of transcutaneous electromyography of respiratory muscles (rEMG) in matched comparison to lung function measurements. METHODS: After determining feasibility and repeatability of rEMG in 20 spontaneously sleeping healthy neonates, we measured the relative impact of intercostal and diaphragmatic EMG activity in direct comparison to the resulting tidal flow and FRC. RESULTS: We found good feasibility, repeatability and correlation of timing indices between rEMG activity and flow. The rEMG amplitude was significantly dependent on the resistive load of the face mask. Diaphragm and intercostal muscle activity commenced prior to the onset of flow and remained active during the expiratory cycle. The relative contribution of intercostal and diaphragmatic activity to flow was variable and changed dynamically. CONCLUSION: Using matched rEMG, air flow and lung volume measurements, we have found good feasibility and repeatability of intercostal and diaphragm rEMG measurements and provide the first quantitative measures of the temporal relationship between muscle activity and flow in spontaneously sleeping healthy neonates. Lung mechanical function is dynamically regulated and adapts on a breath to breath basis. So, non-invasive rEMG measurements alone or in combination with lung function might provide a more comprehensive picture of pulmonary mechanics in future studies. The data describing the timing of EMG and flow may be important for future studies of EMG triggered mechanical ventilation.