991 resultados para distributed feedback laser diode (DFB LD)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scarcity and diversity of resources among the devices of heterogeneous computing environments may affect their ability to perform services with specific Quality of Service constraints, particularly in dynamic distributed environments where the characteristics of the computational load cannot always be predicted in advance. Our work addresses this problem by allowing resource constrained devices to cooperate with more powerful neighbour nodes, opportunistically taking advantage of global distributed resources and processing power. Rather than assuming that the dynamic configuration of this cooperative service executes until it computes its optimal output, the paper proposes an anytime approach that has the ability to tradeoff deliberation time for the quality of the solution. Extensive simulations demonstrate that the proposed anytime algorithms are able to quickly find a good initial solution and effectively optimise the rate at which the quality of the current solution improves at each iteration, with an overhead that can be considered negligible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In global scientific experiments with collaborative scenarios involving multinational teams there are big challenges related to data access, namely data movements are precluded to other regions or Clouds due to the constraints on latency costs, data privacy and data ownership. Furthermore, each site is processing local data sets using specialized algorithms and producing intermediate results that are helpful as inputs to applications running on remote sites. This paper shows how to model such collaborative scenarios as a scientific workflow implemented with AWARD (Autonomic Workflow Activities Reconfigurable and Dynamic), a decentralized framework offering a feasible solution to run the workflow activities on distributed data centers in different regions without the need of large data movements. The AWARD workflow activities are independently monitored and dynamically reconfigured and steering by different users, namely by hot-swapping the algorithms to enhance the computation results or by changing the workflow structure to support feedback dependencies where an activity receives feedback output from a successor activity. A real implementation of one practical scenario and its execution on multiple data centers of the Amazon Cloud is presented including experimental results with steering by multiple users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In video communication systems, the video signals are typically compressed and sent to the decoder through an error-prone transmission channel that may corrupt the compressed signal, causing the degradation of the final decoded video quality. In this context, it is possible to enhance the error resilience of typical predictive video coding schemes using as inspiration principles and tools from an alternative video coding approach, the so-called Distributed Video Coding (DVC), based on the Distributed Source Coding (DSC) theory. Further improvements in the decoded video quality after error-prone transmission may also be obtained by considering the perceptual relevance of the video content, as distortions occurring in different regions of a picture have a different impact on the user's final experience. In this context, this paper proposes a Perceptually Driven Error Protection (PDEP) video coding solution that enhances the error resilience of a state-of-the-art H.264/AVC predictive video codec using DSC principles and perceptual considerations. To increase the H.264/AVC error resilience performance, the main technical novelties brought by the proposed video coding solution are: (i) design of an improved compressed domain perceptual classification mechanism; (ii) design of an improved transcoding tool for the DSC-based protection mechanism; and (iii) integration of a perceptual classification mechanism in an H.264/AVC compliant codec with a DSC-based error protection mechanism. The performance results obtained show that the proposed PDEP video codec provides a better performing alternative to traditional error protection video coding schemes, notably Forward Error Correction (FEC)-based schemes. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of resources systems selection takes an important part in Distributed/Agile/Virtual Enterprises (D/A/V Es) integration. However, the resources systems selection is still a difficult matter to solve in a D/A/VE, as it is pointed out in this paper. Globally, we can say that the selection problem has been equated from different aspects, originating different kinds of models/algorithms to solve it. In order to assist the development of a web prototype tool (broker tool), intelligent and flexible, that integrates all the selection model activities and tools, and with the capacity to adequate to each D/A/V E project or instance (this is the major goal of our final project), we intend in this paper to show: a formulation of a kind of resources selection problem and the limitations of the algorithms proposed to solve it. We formulate a particular case of the problem as an integer programming, which is solved using simplex and branch and bound algorithms, and identify their performance limitations (in terms of processing time) based on simulation results. These limitations depend on the number of processing tasks and on the number of pre-selected resources per processing tasks, defining the domain of applicability of the algorithms for the problem studied. The limitations detected open the necessity of the application of other kind of algorithms (approximate solution algorithms) outside the domain of applicability founded for the algorithms simulated. However, for a broker tool it is very important the knowledge of algorithms limitations, in order to, based on problem features, develop and select the most suitable algorithm that guarantees a good performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The international Electrotechnical Commission (IEC) 61499 architecture incorporated several function block with which distributed control application may be developed, and how these are interpreted and executed. However, due the distributed nature of the control applications, many issues also need to be taken into account. Most of these are due to the new error model and failure modes of the distributed hardware on which the distributed application is executed and also due the incomplete standards definition of the execution models. IEC 61499 frameworks does not clarify how to handle with replication of software and hardware components. In this paper we propose a replication model for IEC 61499 applications and which mechanisms and protocols may be used for their support.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present work was to characterize the internal structure of nanogratings generated inside bulk fused silica by ultrafast laser processing and to study the influence of diluted hydrofluoric acid etching on their structure. The nanogratings were inscribed at a depth of 100 mu m within fused silica wafers by a direct writing method, using 1030 nm radiation wavelength and the following processing parameters: E = 5 mu J, tau = 560 fs, f = 10 kHz, and v = 100 mu m/s. The results achieved show that the laser-affected regions are elongated ellipsoids with a typical major diameter of about 30 mu m and a minor diameter of about 6 mu m. The nanogratings within these regions are composed of alternating nanoplanes of damaged and undamaged material, with an average periodicity of 351 +/- 21 nm. The damaged nanoplanes contain nanopores randomly dispersed in a material containing a large density of defects. These nanopores present a roughly bimodal size distribution with average dimensions for each class of pores 65 +/- 20 x 16 +/- 8 x 69 +/- 16 nm(3) and 367 +/- 239 x 16 +/- 8 x 360 +/- 194 nm(3), respectively. The number and size of the nanopores increases drastically when an hydrofluoric acid treatment is performed, leading to the coalescence of these voids into large planar discontinuities parallel to the nanoplanes. The preferential etching of the damaged material by the hydrofluoric acid solution, which is responsible for the pores growth and coalescence, confirms its high defect density. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The morphological and structural modifications induced in sapphire by surface treatment with femtosecond laser radiation were studied. Single-crystal sapphire wafers cut parallel to the (0 1 2) planes were treated with 560 fs, 1030 nm wavelength laser radiation using wide ranges of pulse energy and repetition rate. Self-ordered periodic structures with an average spatial periodicity of similar to 300 nm were observed for fluences slightly higher than the ablation threshold. For higher fluences the interaction was more disruptive and extensive fracture, exfoliation, and ejection of ablation debris occurred. Four types of particles were found in the ablation debris: (a) spherical nanoparticles about 50 nm in diameter; (b) composite particles between 150 and 400 nm in size; (c) rounded resolidified particles about 100-500 nm in size; and (d) angular particles presenting a lamellar structure and deformation twins. The study of those particles by selected area electron diffraction showed that the spherical nanoparticles and the composite particles are amorphous, while the resolidified droplets and the angular particles, present a crystalline a-alumina structure, the same of the original material. Taking into consideration the existing ablation theories, it is proposed that the spherical nanoparticles are directly emitted from the surface in the ablation plume, while resolidified droplets are emitted as a result of the ablation process, in the liquid phase, in the low intensity regime, and by exfoliation, in the high intensity regime. Nanoparticle clusters are formed by nanoparticle coalescence in the cooling ablation plume. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada para a obtenção do Grau de Doutor em Informática pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of femtosecond laser interferometry to direct patterning of thin-film magnetic alloys is demonstrated. The formation of stripe gratings with submicron periodicities is achieved in Fe1-xVx (x=18-34wt. %) layers, with a difference in magnetic moments up to Delta mu/mu similar to 20 between adjacent stripes but without any significant development of the topographical relief (<1% of the film thickness). The produced gratings exhibit a robust effect of their anisotropy shape on magnetization curves in the film plane. The obtained data witness ultrafast diffusive transformations associated with the process of spinodal decomposition and demonstrate an opportunity for producing magnetic nanostructures with engineered properties upon this basis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on a simple method to obtain surface gratings using a Michelson interferometer and femtosecond laser radiation. In the optical setup used, two parallel laser beams are generated using a beam splitter and then focused using the same focusing lens. An interference pattern is created in the focal plane of the focusing lens, which can be used to pattern the surface of materials. The main advantage of this method is that the optical paths difference of the interfering beams is independent of the distance between the beams. As a result, the fringes period can be varied without a need for major realignment of the optical system and the time coincidence between the interfering beams can be easily monitored. The potential of the method was demonstrated by patterning surface gratings with different periods on titanium surfaces in air.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the fabrication of planar sub-micron gratings in silicon with a period of 720 nm using a modified Michelson interferometer and femtosecond laser radiation. The gratings consist of alternated stripes of laser ablated and unmodified material. Ablated stripes are bordered by parallel ridges which protrude above the unmodified material. In the regions where ridges are formed, the laser radiation intensity is not sufficient to cause ablation. Nevertheless, melting and a significant temperature increase are expected, and ridges may be formed due to expansion of silicon during resolidification or silicon oxidation. These conclusions are consistent with the evolution of the stripes morphology as a function of the distance from the center of the grating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IEEE International Symposium on Circuits and Systems, pp. 2258 – 2261, Seattle, EUA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IEEE International Symposium on Circuits and Systems, pp. 724 – 727, Seattle, EUA