912 resultados para diffusion coefficients
Resumo:
We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KMGAP) that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KMGAP is based on the PRA model framework (P¨oschl-Rudich- Ammann, 2007), and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modeled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system and the computational constraints, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmospheric aerosols and clouds. In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at 270K is close to unity (Winkler et al., 2006). Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for efficient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol particles, we illustrate how the formation and evaporation of volatile reaction products like nonanal can cause a decrease in the size of oleic acid particles exposed to ozone.
Resumo:
The aim of this paper is to explore effects of macroeconomic variables on house prices and also, the lead-lag relationships of real estate markets to examine house price diffusion across Asian financial centres. The analysis is based on the Global Vector Auto-Regression (GVAR) model estimated using quarterly data for six Asian financial centres (Hong Kong, Tokyo, Seoul, Singapore, Taipei and Bangkok) from 1991Q1 to 2011Q2. The empirical results indicate that the global economic conditions play significant roles in shaping house price movements across Asian financial centres. In particular, a small open economy that heavily relies on international trade such as – Singapore and Tokyo - shows positive correlations between economy’s openness and house prices, consistent with the Balassa-Samuelson hypothesis in international trade. However, region-specific conditions do play important roles as determinants of house prices, partly due to restrictive housing policies and demand-supply imbalances, as found in Singapore and Bangkok.
Resumo:
Successful innovation diffusion process may well take the form of knowledge transfer process. Therefore, the primary objectives of this paper include: first, to evaluate the interrelations between transfer of knowledge and diffusion of innovation; and second to develop a model to establish a connection between the two. This has been achieved using a four-step approach. The first step of the approach is to assess and discuss the theories relating to knowledge transfer (KT) and innovation diffusion (ID). The second step focuses on developing basic models for KT and ID, based on the key theories surrounding these areas. A considerable amount of literature has been written on the association between knowledge management and innovation, the respective fields of KT and ID. The next step, therefore, explores the relationship between innovation and knowledge management in order to identify the connections between the latter, i.e. KT and ID. Finally, step four proposes and develops an integrated model for KT and ID. As the developed model suggests the sub-processes of knowledge transfer can be connected to the innovation diffusion process in several instances as discussed and illustrated in the paper.
Resumo:
The migration of liquids in porous media, such as sand, has been commonly considered at high saturation levels with liquid pathways at pore dimensions. In this letter we reveal a low saturation regime observed in our experiments with droplets of extremely low volatility liquids deposited on sand. In this regime the liquid is mostly found within the grain surface roughness and in the capillary bridges formed at the contacts between the grains. The bridges act as variable-volume reservoirs and the flow is driven by the capillary pressure arising at the wetting front according to the roughness length scales. We propose that this migration (spreading) is the result of interplay between the bridge volume adjustment to this pressure distribution and viscous losses of a creeping flow within the roughness. The net macroscopic result is a special case of non-linear diffusion described by a superfast diffusion equation (SFDE) for saturation with distinctive mathematical character. We obtain solutions to a moving boundary problem defined by SFDE that robustly convey a time power law of spreading as seen in our experiments.
Resumo:
We analyze the large time behavior of a stochastic model for the lay down of fibers on a moving conveyor belt in the production process of nonwovens. It is shown that under weak conditions this degenerate diffusion process has a unique invariant distribution and is even geometrically ergodic. This generalizes results from previous works [M. Grothaus and A. Klar, SIAM J. Math. Anal., 40 (2008), pp. 968–983; J. Dolbeault et al., arXiv:1201.2156] concerning the case of a stationary conveyor belt, in which the situation of a moving conveyor belt has been left open.
Resumo:
The persistence and decay of springtime total ozone anomalies over the entire extratropics (midlatitudes plus polar regions) is analysed using results from the Canadian Middle Atmosphere Model (CMAM), a comprehensive chemistry-climate model. As in the observations, interannual anomalies established through winter and spring persist with very high correlation coefficients (above 0.8) through summer until early autumn, while decaying in amplitude as a result of photochemical relaxation in the quiescent summertime stratosphere. The persistence and decay of the ozone anomalies in CMAM agrees extremely well with observations, even in the southern hemisphere when the model is run without heterogeneous chemistry (in which case there is no ozone hole and the seasonal cycle of ozone is quite different from observations). However in a version of CMAM with strong vertical diffusion, the northern hemisphere anomalies decay far too rapidly compared to observations. This shows that ozone anomaly persistence and decay does not depend on how the springtime anomalies are created or on their magnitude, but reflects the transport and photochemical decay in the model. The seasonality of the long-term trends over the entire extratropics is found to be explained by the persistence of the interannual anomalies, as in the observations, demonstrating that summertime ozone trends reflect winter/spring trends rather than any change in summertime ozone chemistry. However this mechanism fails in the northern hemisphere midlatitudes because of the relatively large impact, compared to observations, of the CMAM polar anomalies. As in the southern hemisphere, the influence of polar ozone loss in CMAM increases the midlatitude summertime loss, leading to a relatively weak seasonal dependence of ozone loss in the Northern Hemisphere compared to the observations.
Resumo:
Expressions for finite sums involving the binomial coefficients with unit fraction coefficients whose denominators form an arithmetic sequence are determined.
Resumo:
Peatland habitats are important carbon stocks that also have the potential to be significant sources of greenhouse gases, particularly when subject to changes such as artificial drainage and application of fertilizer. Models aiming to estimate greenhouse gas release from peatlands require an accurate estimate of the diffusion coefficient of gas transport through soil (Ds). The availability of specific measurements for peatland soils is currently limited. This study measured Ds for a peat soil with an overlying clay horizon and compared values with those from widely available models. The Ds value of a sandy loam reference soil was measured for comparison. Using the Currie (1960) method, Ds was measured between an air-filled porosity (ϵ) range of 0 and 0.5 cm3 cm−3. Values of Ds for the peat cores ranged between 3.2 × 10−4 and 4.4 × 10−3 m2 hour−1, for loamy clay cores between 0 and 4.7 × 10−3 m2 hour−1 and for the sandy reference soil they were between 5.4 × 10−4 and 3.4 × 10−3 m2 hour−1. The agreement of measured and modelled values of relative diffusivity (Ds/D0, with D0 the diffusion coefficient through free air) varied with soil type; however, the Campbell (1985) model provided the best replication of measured values for all soils. This research therefore suggests that the use of the Campbell model in the absence of accurately measured Ds and porosity values for a study soil would be appropriate. Future research into methods to reduce shrinkage of peat during measurement and therefore allow measurement of Ds for a greater range of ϵ would be beneficial.
Resumo:
An analysis method for diffusion tensor (DT) magnetic resonance imaging data is described, which, contrary to the standard method (multivariate fitting), does not require a specific functional model for diffusion-weighted (DW) signals. The method uses principal component analysis (PCA) under the assumption of a single fibre per pixel. PCA and the standard method were compared using simulations and human brain data. The two methods were equivalent in determining fibre orientation. PCA-derived fractional anisotropy and DT relative anisotropy had similar signal-to-noise ratio (SNR) and dependence on fibre shape. PCA-derived mean diffusivity had similar SNR to the respective DT scalar, and it depended on fibre anisotropy. Appropriate scaling of the PCA measures resulted in very good agreement between PCA and DT maps. In conclusion, the assumption of a specific functional model for DW signals is not necessary for characterization of anisotropic diffusion in a single fibre.
Resumo:
The mixing of floes of different thickness caused by repeated deformation of the ice cover is modeled as diffusion, and the mass balance equation for sea ice accounting for mass diffusion is developed. The effect of deformational diffusion on the ice thickness balance is shown to reach 1% of the divergence effect, which describes ridging and lead formation. This means that with the same accuracy the mass balance equation can be written in terms of mean velocity rather than mean mass-weighted velocity, which one should correctly use for a multicomponent fluid such as sea ice with components identified by floe thickness. Mixing (diffusion) of sea ice also occurs because of turbulent variations in wind and ocean drags that are unresolved in models. Estimates of the importance of turbulent mass diffusion on the dynamic redistribution of ice thickness are determined using empirical data for the turbulent diffusivity. For long-time-scale prediction (≫5 days), where unresolved atmospheric motion may have a length scale on the order of the Arctic basin and the time scale is larger than the synoptic time scale of atmospheric events, turbulent mass diffusion can exceed 10% of the divergence effect. However, for short-time-scale prediction, for example, 5 days, the unresolved scales are on the order of 100 km, and turbulent diffusion is about 0.1% of the divergence effect. Because inertial effects are small in the dynamics of the sea ice pack, diffusive momentum transfer can be disregarded.
Resumo:
Understanding nanoparticle diffusion within non-Newtonian biological and synthetic fluids is essential in designing novel formulations (e.g., nanomedicines for drug delivery, shampoos, lotions, coatings, paints, etc.), but is presently poorly defined. This study reports the diffusion of thiolated and PEGylated silica nanoparticles, characterized by small-angle neutron scattering, in solutions of various water-soluble polymers such as poly(acrylic acid) (PAA), poly(Nvinylpyrrolidone) (PVP), poly(ethylene oxide) (PEO), and hydroxyethylcellulose (HEC) probed using NanoSight nanoparticle tracking analysis. Results show that the diffusivity of nanoparticles is affected by their dimensions, medium viscosity, and, in particular, the specific interactions between nanoparticles and the macromolecules in solution; strong attractive interactions such as hydrogen bonding hamper diffusion. The water-soluble polymers retarded the diffusion of thiolated particles in the order PEO > PVP > PAA > HEC whereas for PEGylated silica particles retardation followed the order PAA > PVP = HEC > PEO. In the absence of specific interactions with the medium, PEGylated nanoparticles exhibit enhanced mobility compared to their thiolated counterparts despite some increase in their dimensions.
Resumo:
In this paper we report on a major empirical study of centripetal and centrifugal forces in the City of London financial services agglomeration. The study sheds light on (1) the manner and magnitude of firm interaction in the agglomeration; (2) the characteristics of the agglomeration that aid the competitiveness of incumbent firms; and (3) the problems associated with agglomeration. In addressing these issues, we use the data to (1) test emerging theory that explains the high productivity and innovation of agglomerations in terms of their ability to generate and diffuse knowledge; and (2) evaluate the ‘end of geography’ thesis.
Resumo:
Why are some states more willing to adopt military innovations than others? Why, for example, were the great powers of Europe able to successfully reform their military practices to better adapt to and participate in the so-called military revolution of the sixteenth and seventeenth centuries while their most important extra-European competitor, the Ottoman Empire, failed to do so? This puzzle is best explained by two factors: civil-military relations and historical timing. In the Ottoman Empire, the emergence of an institutionally strong and internally cohesive army during the early stages of state formation—in the late fourteenth century—equipped the military with substantial bargaining powers. In contrast, the great powers of Europe drew heavily on private providers of military power during the military revolution and developed similar armies only by the second half of the seventeenth century, limiting the bargaining leverage of European militaries over their rulers. In essence, the Ottoman standing army was able to block reform efforts that it believed challenged its parochial interests. Absent a similar institutional challenge, European rulers initiated military reforms and motivated officers and military entrepreneurs to participate in the ongoing military revolution.