978 resultados para dental cements


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to evaluate wound healing repair of dental sockets after topical application of 5% epsilon-aminocaproic acid (EACA) and the use of fibrin adhesive implant in rats under anticoagulant therapy with warfarin. Sixty Albinus wistar rats were used, divided into three groups of 20. In Group I, the animals were given 0.1 mL/100 mg of 0.9% saline solution per day, beginning 6 days before dental extraction and continuing throughout the experimental period. In Group II, the animals received 0.03 mL of sodium warfarin daily, beginning 6 days before the surgery and continuing until the day of sacrifice; after tooth extractions, the sockets were filled with fibrin adhesive material. In Group III the animals were treated as in Group II, and after extractions, the sockets were irrigated with 5 mL of 5% EACA and filled with the same fibrin adhesive material. All groups presented biological phases of wound healing repair, the differences being evident only in the chronology. The results obtained in Group III were very similar to those of Group I in the last period of wound repair, whereas Group II presented a late chronology compared to the other groups. © 2005 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: This study investigated in situ the effect of iron (Fe) on the reduction of demineralization of bovine enamel, as well as on the composition of dental biofilm.Design and methods: Twelve volunteers were included in this blind crossover study, which was conducted in two stages of 14 days each. For each stage, the volunteers received palatal appliances containing four blocks of bovine enamel (4 mm x 4 mm x 2.5 mm). Six volunteers dripped a solution of 15 mmol L-1 ferrous sulphate onto the fragments and the remaining six dripped deionized water (eight times per day). After five minutes, a fresh 20% (w/v) sucrose solution was dripped onto all enamel blocks. During the experimental period the volunteers brushed their teeth with non-fluoridated dentifrice. After each stage, the percentage of surface microhardness change (%SMHC) and area of mineral toss (Delta Z) were determined on enamel and the dental biofilm formed on the blocks was collected and analysed for F, P, Ca, Fe and alkali-soluble carbohydrates. The concentrations of F, Ca and Fe in enamel were also analysed after acid biopsies.Results: There was a statistically significant increase in the P and Fe concentrations in the biofilms treated with ferrous sulphate (p < 0.05), which was not observed for F, Ca and alkali-soluble carbohydrates. The group treated with ferrous sulphate had significantly lower %SMHC and Delta Z when compared to control (p < 0.05).Conclusions: These results showed that ferrous sulphate reduced the demineralization of enamel blocks and altered the ionic composition of the dental biofilm formed in situ. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface modifications have been applied in endosteal bone devices in order to improve the osseointegration through direct contact between neoformed bone and the implant without an intervening soft tissue layer. Surface characteristics of titanium implants have been modified by addictive methods, such as metallic titanium, titanium oxide and hydroxyapatite powder plasma spray, as well as by subtractive methods, such as acid etching, acid etching associated with sandblasting by either AlO2 or TiO2, and recently by laser ablation. Surface modification for dental and medical implants can be obtained by using laser irradiation technique where its parameters like repetition rate, pulse energy, scanning speed and fluency must be taken into accounting to the appropriate surface topography. Surfaces of commercially pure Ti (cpTi) were modified by laser Nd:YVO4 in nine different parameters configurations, all under normal atmosphere. The samples were characterized by SEM and XRD refined by Rietveld method. The crystalline phases alpha Ti, beta Ti, Ti6O, Ti3O and TiO were formed by the melting and fast cooling processes during irradiation. The resulting phases on the irradiated surface were correlated with the laser beam parameters: the aim of the present work was to control titanium oxides formations in order to improve implants osseointegration by using a laser irradiation technique which is of great importance to biomaterial devices due to being a clean and reproducible process. (c) 2007 Elsevier B.V. All rights reserved.