927 resultados para cryptographic pairing computation, elliptic curve cryptography
Resumo:
The design of control, estimation or diagnosis algorithms most often assumes that all available process variables represent the system state at the same instant of time. However, this is never true in current network systems, because of the unknown deterministic or stochastic transmission delays introduced by the communication network. During the diagnosing stage, this will often generate false alarms. Under nominal operation, the different transmission delays associated with the variables that appear in the computation form produce discrepancies of the residuals from zero. A technique aiming at the minimisation of the resulting false alarms rate, that is based on the explicit modelling of communication delays and on their best-case estimation is proposed
Resumo:
Crowdsourcing. Social Machines. Human computation. Co-construction Made Real
Resumo:
the introduction of this research paper (especially pg 2-4) and its list of references may be useful to clarify the notions of Bayesian learning applied to trust as explained in the lectures. This is optional reading
Resumo:
Speaker(s): Prof. David Evans Organiser: Dr Tim Chown Time: 22/05/2014 10:45-11:45 Location: B53/4025 Abstract Secure multi-party computation enables two (or more) participants to reliably compute a function that depends on both of their inputs, without revealing those inputs to the other party or needing to trust any other party. It could enable two people who meet at a conference to learn who they known in common without revealing any of their other contacts, or allow a pharmaceutical company to determine the correct dosage of a medication based on a patient’s genome without compromising the privacy of the patient. A general solution to this problem has been known since Yao's pioneering work in the 1980s, but only recently has it become conceivable to use this approach in practice. Over the past few years, my research group has worked towards making secure computation practical for real applications. In this talk, I'll provide a brief introduction to secure computation protocols, describe the techniques we have developed to design scalable and efficient protocols, and share some recent results on improving efficiency and how secure computing applications are developed.
Resumo:
We document the existence of a Crime Kuznets Curve in US states since the 1970s. As income levels have risen, crime has followed an inverted U-shaped pattern, first increasing and then dropping. The Crime Kuznets Curve is not explained by income inequality. In fact, we show that during the sample period inequality has risen monotonically with income, ruling out the traditional Kuznets Curve. Our finding is robust to adding a large set of controls that are used in the literature to explain the incidence of crime, as well as to controlling for state and year fixed effects. The Curve is also revealed in nonparametric specifications. The Crime Kuznets Curve exists for property crime and for some categories of violent crime.
Resumo:
Realistic rendering animation is known to be an expensive processing task when physically-based global illumination methods are used in order to improve illumination details. This paper presents an acceleration technique to compute animations in radiosity environments. The technique is based on an interpolated approach that exploits temporal coherence in radiosity. A fast global Monte Carlo pre-processing step is introduced to the whole computation of the animated sequence to select important frames. These are fully computed and used as a base for the interpolation of all the sequence. The approach is completely view-independent. Once the illumination is computed, it can be visualized by any animated camera. Results present significant high speed-ups showing that the technique could be an interesting alternative to deterministic methods for computing non-interactive radiosity animations for moderately complex scenarios
Resumo:
Aquesta tesi tracta del disseny, implementació i discussió d'algoritmes per resoldre problemes de visibilitat i bona-visibilitat utilitzant el hardware gràfic de l'ordinador. Concretament, s'obté una discretització dels mapes de multi-visibilitat i bona-visibilitat a partir d'un conjunt d'objectes de visió i un conjunt d'obstacles. Aquests algoritmes són útils tant per fer càlculs en dues dimensions com en tres dimensions. Fins i tot ens permeten calcular-los sobre terrenys.
Resumo:
We consider boundary value problems for the elliptic sine-Gordon equation posed in the half plane y > 0. This problem was considered in Gutshabash and Lipovskii (1994 J. Math. Sci. 68 197–201) using the classical inverse scattering transform approach. Given the limitations of this approach, the results obtained rely on a nonlinear constraint on the spectral data derived heuristically by analogy with the linearized case. We revisit the analysis of such problems using a recent generalization of the inverse scattering transform known as the Fokas method, and show that the nonlinear constraint of Gutshabash and Lipovskii (1994 J. Math. Sci. 68 197–201) is a consequence of the so-called global relation. We also show that this relation implies a stronger constraint on the spectral data, and in particular that no choice of boundary conditions can be associated with a decaying (possibly mod 2π) solution analogous to the pure soliton solutions of the usual, time-dependent sine-Gordon equation. We also briefly indicate how, in contrast to the evolutionary case, the elliptic sine-Gordon equation posed in the half plane does not admit linearisable boundary conditions.