939 resultados para crop insurance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Impact response surfaces (IRSs) depict the response of an impact variable to changes in two explanatory variables as a plotted surface. Here, IRSs of spring and winter wheat yields were constructed from a 25-member ensemble of process-based crop simulation models. Twenty-one models were calibrated by different groups using a common set of calibration data, with calibrations applied independently to the same models in three cases. The sensitivity of modelled yield to changes in temperature and precipitation was tested by systematically modifying values of 1981-2010 baseline weather data to span the range of 19 changes projected for the late 21st century at three locations in Europe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date, crop models have been little used for characterising the types of cultivars suited to a changed climate, though simulations of altered management (e.g. sowing) are often reported. However, in neither case are model uncertainties evaluated at the same time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early ancestors of crop simulation models (De Wit, 1965; Monteith, 1965; Duncan et al., 1967) were born before primitive personal computers were available (e.g. Apple II released in 1977, IBM PC released in 1981). Paleo-computer programs were run in mainframes with the support of punch cards. As computers became more available and powerful, crop models evolved into sophisticated tools summarizing our understanding of how crops operate. This evolution was triggered by the need to answer new scientific questions and improve the accuracy of model simulations, especially under limiting conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data of diverse crop rotations from five locations across Europe were distributed to modelers to investigate the capability of models to handle complex crop rotations and management interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All crop models, whether site-specific or global-gridded and regardless of crop, simulate daily crop transpiration and soil evaporation during the crop life cycle, resulting in seasonal crop water use. Modelers use several methods for predicting daily potential evapotranspiration (ET), including FAO-56, Penman-Monteith, Priestley-Taylor, Hargreaves, full energy balance, and transpiration water efficiency. They use extinction equations to partition energy to soil evaporation or transpiration, depending on leaf area index. Most models simulate soil water balance and soil-root water supply for transpiration, and limit transpiration if water uptake is insufficient, and thereafter reduce dry matter production. Comparisons among multiple crop and global gridded models in the Agricultural Model Intercomparison and Improvement Project (AgMIP) show surprisingly large differences in simulated ET and crop water use for the same climatic conditions. Model intercomparisons alone are not enough to know which approaches are correct. There is an urgent need to test these models against field-observed data on ET and crop water use. It is important to test various ET modules/equations in a model platform where other aspects such as soil water balance and rooting are held constant, to avoid compensation caused by other parts of models. The CSM-CROPGRO model in DSSAT already has ET equations for Priestley-Taylor, Penman-FAO-24, Penman-Monteith-FAO-56, and an hourly energy balance approach. In this work, we added transpiration-efficiency modules to DSSAT and AgMaize models and tested the various ET equations against available data on ET, soil water balance, and season-long crop water use of soybean, fababean, maize, and other crops where runoff and deep percolation were known or zero. The different ET modules created considerable differences in predicted ET, growth, and yield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to establish rational nitrogen (N) application and reduce groundwater contamination, a clearer understanding of the N distribution through the growing season and its balance is crucial. Excessive doses of N and/or water applied to fertigated crops involve a substantial risk of aquifer contamination by nitrate; but knowledge of N cycling and availability within the soil could assist in avoiding this excess. In central Spain, the main horticultural fertigated crop is the melon type ?piel de sapo¿ and it is cultivated in vulnerable zones to nitrate pollution (Directive 91/676/CEE). However, until few years ago there were not antecedents related to the optimization of nitrogen fertilization together with irrigation. Water and N footprint are indicators that allow assessing the impact generated by different agricultural practices, so they can be used to improve the management strategies in fertigated crop systems. The water footprint distinguishes between blue water (sources of water applied to the crop, like irrigation and precipitation), green water (water used by the crop and stored in the soil), and it is furthermore possible to quantify the impact of pollution by calculating the grey water, which is defined as the volume of polluted water created from the growing and production of crops. On the other hand, the N footprint considers green N (nitrogen consumed by the crops and stored in the soil), blue N (N available for crop, like N applied with mineral and/or organic fertilizers, N applied with irrigation water and N mineralized during the crop period), whereas grey N is the amount of N-NO3- washed from the soil to the aquifer. All these components are expressed as the ratio between the components of water or N footprint and the yield (m3 t-1 or kg N t-1 respectively). The objetives of this work were to evaluate the impact derivated from the use of different fertilizer practices in a melon crop using water and N footprint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La presente Tesis constituye un avance en el conocimiento de los efectos de la variabilidad climática en los cultivos en la Península Ibérica (PI). Es bien conocido que la temperatura del océano, particularmente de la región tropical, es una de las variables más convenientes para ser utilizado como predictor climático. Los océanos son considerados como la principal fuente de almacenamiento de calor del planeta debido a la alta capacidad calorífica del agua. Cuando se libera esta energía, altera los regímenes globales de circulación atmosférica por mecanismos de teleconexión. Estos cambios en la circulación general de la atmósfera afectan a la temperatura, precipitación, humedad, viento, etc., a escala regional, los cuales afectan al crecimiento, desarrollo y rendimiento de los cultivos. Para el caso de Europa, esto implica que la variabilidad atmosférica en una región específica se asocia con la variabilidad de otras regiones adyacentes y/o remotas, como consecuencia Europa está siendo afectada por los patrones de circulaciones globales, que a su vez, se ven afectados por patrones oceánicos. El objetivo general de esta tesis es analizar la variabilidad del rendimiento de los cultivos y su relación con la variabilidad climática y teleconexiones, así como evaluar su predictibilidad. Además, esta Tesis tiene como objetivo establecer una metodología para estudiar la predictibilidad de las anomalías del rendimiento de los cultivos. El análisis se centra en trigo y maíz como referencia para otros cultivos de la PI, cultivos de invierno en secano y cultivos de verano en regadío respectivamente. Experimentos de simulación de cultivos utilizando una metodología en cadena de modelos (clima + cultivos) son diseñados para evaluar los impactos de los patrones de variabilidad climática en el rendimiento y su predictibilidad. La presente Tesis se estructura en dos partes: La primera se centra en el análisis de la variabilidad del clima y la segunda es una aplicación de predicción cuantitativa de cosechas. La primera parte está dividida en 3 capítulos y la segundo en un capitulo cubriendo los objetivos específicos del presente trabajo de investigación. Parte I. Análisis de variabilidad climática El primer capítulo muestra un análisis de la variabilidad del rendimiento potencial en una localidad como indicador bioclimático de las teleconexiones de El Niño con Europa, mostrando su importancia en la mejora de predictibilidad tanto en clima como en agricultura. Además, se presenta la metodología elegida para relacionar el rendimiento con las variables atmosféricas y oceánicas. El rendimiento de los cultivos es parcialmente determinado por la variabilidad climática atmosférica, que a su vez depende de los cambios en la temperatura de la superficie del mar (TSM). El Niño es el principal modo de variabilidad interanual de la TSM, y sus efectos se extienden en todo el mundo. Sin embargo, la predictibilidad de estos impactos es controversial, especialmente aquellos asociados con la variabilidad climática Europea, que se ha encontrado que es no estacionaria y no lineal. Este estudio mostró cómo el rendimiento potencial de los cultivos obtenidos a partir de datos de reanálisis y modelos de cultivos sirve como un índice alternativo y más eficaz de las teleconexiones de El Niño, ya que integra las no linealidades entre las variables climáticas en una única serie temporal. Las relaciones entre El Niño y las anomalías de rendimiento de los cultivos son más significativas que las contribuciones individuales de cada una de las variables atmosféricas utilizadas como entrada en el modelo de cultivo. Además, la no estacionariedad entre El Niño y la variabilidad climática europea se detectan con mayor claridad cuando se analiza la variabilidad de los rendimiento de los cultivos. La comprensión de esta relación permite una cierta predictibilidad hasta un año antes de la cosecha del cultivo. Esta predictibilidad no es constante, sino que depende tanto la modulación de la alta y baja frecuencia. En el segundo capítulo se identifica los patrones oceánicos y atmosféricos de variabilidad climática que afectan a los cultivos de verano en la PI. Además, se presentan hipótesis acerca del mecanismo eco-fisiológico a través del cual el cultivo responde. Este estudio se centra en el análisis de la variabilidad del rendimiento de maíz en la PI para todo el siglo veinte, usando un modelo de cultivo calibrado en 5 localidades españolas y datos climáticos de reanálisis para obtener series temporales largas de rendimiento potencial. Este estudio evalúa el uso de datos de reanálisis para obtener series de rendimiento de cultivos que dependen solo del clima, y utilizar estos rendimientos para analizar la influencia de los patrones oceánicos y atmosféricos. Los resultados muestran una gran fiabilidad de los datos de reanálisis. La distribución espacial asociada a la primera componente principal de la variabilidad del rendimiento muestra un comportamiento similar en todos los lugares estudiados de la PI. Se observa una alta correlación lineal entre el índice de El Niño y el rendimiento, pero no es estacionaria en el tiempo. Sin embargo, la relación entre la temperatura del aire y el rendimiento se mantiene constante a lo largo del tiempo, siendo los meses de mayor influencia durante el período de llenado del grano. En cuanto a los patrones atmosféricos, el patrón Escandinavia presentó una influencia significativa en el rendimiento en PI. En el tercer capítulo se identifica los patrones oceánicos y atmosféricos de variabilidad climática que afectan a los cultivos de invierno en la PI. Además, se presentan hipótesis acerca del mecanismo eco-fisiológico a través del cual el cultivo responde. Este estudio se centra en el análisis de la variabilidad del rendimiento de trigo en secano del Noreste (NE) de la PI. La variabilidad climática es el principal motor de los cambios en el crecimiento, desarrollo y rendimiento de los cultivos, especialmente en los sistemas de producción en secano. En la PI, los rendimientos de trigo son fuertemente dependientes de la cantidad de precipitación estacional y la distribución temporal de las mismas durante el periodo de crecimiento del cultivo. La principal fuente de variabilidad interanual de la precipitación en la PI es la Oscilación del Atlántico Norte (NAO), que se ha relacionado, en parte, con los cambios en la temperatura de la superficie del mar en el Pacífico Tropical (El Niño) y el Atlántico Tropical (TNA). La existencia de cierta predictibilidad nos ha animado a analizar la posible predicción de los rendimientos de trigo en la PI utilizando anomalías de TSM como predictor. Para ello, se ha utilizado un modelo de cultivo (calibrado en dos localidades del NE de la PI) y datos climáticos de reanálisis para obtener series temporales largas de rendimiento de trigo alcanzable y relacionar su variabilidad con anomalías de la TSM. Los resultados muestran que El Niño y la TNA influyen en el desarrollo y rendimiento del trigo en el NE de la PI, y estos impactos depende del estado concurrente de la NAO. Aunque la relación cultivo-TSM no es igual durante todo el periodo analizado, se puede explicar por un mecanismo eco-fisiológico estacionario. Durante la segunda mitad del siglo veinte, el calentamiento (enfriamiento) en la superficie del Atlántico tropical se asocia a una fase negativa (positiva) de la NAO, que ejerce una influencia positiva (negativa) en la temperatura mínima y precipitación durante el invierno y, por lo tanto, aumenta (disminuye) el rendimiento de trigo en la PI. En relación con El Niño, la correlación más alta se observó en el período 1981 -2001. En estas décadas, los altos (bajos) rendimientos se asocian con una transición El Niño - La Niña (La Niña - El Niño) o con eventos de El Niño (La Niña) que están finalizando. Para estos eventos, el patrón atmosférica asociada se asemeja a la NAO, que también influye directamente en la temperatura máxima y precipitación experimentadas por el cultivo durante la floración y llenado de grano. Los co- efectos de los dos patrones de teleconexión oceánicos ayudan a aumentar (disminuir) la precipitación y a disminuir (aumentar) la temperatura máxima en PI, por lo tanto el rendimiento de trigo aumenta (disminuye). Parte II. Predicción de cultivos. En el último capítulo se analiza los beneficios potenciales del uso de predicciones climáticas estacionales (por ejemplo de precipitación) en las predicciones de rendimientos de trigo y maíz, y explora métodos para aplicar dichos pronósticos climáticos en modelos de cultivo. Las predicciones climáticas estacionales tienen un gran potencial en las predicciones de cultivos, contribuyendo de esta manera a una mayor eficiencia de la gestión agrícola, seguridad alimentaria y de subsistencia. Los pronósticos climáticos se expresan en diferentes formas, sin embargo todos ellos son probabilísticos. Para ello, se evalúan y aplican dos métodos para desagregar las predicciones climáticas estacionales en datos diarios: 1) un generador climático estocástico condicionado (predictWTD) y 2) un simple re-muestreador basado en las probabilidades del pronóstico (FResampler1). Los dos métodos se evaluaron en un caso de estudio en el que se analizaron los impactos de tres escenarios de predicciones de precipitación estacional (predicción seco, medio y lluvioso) en el rendimiento de trigo en secano, sobre las necesidades de riego y rendimiento de maíz en la PI. Además, se estimó el margen bruto y los riesgos de la producción asociada con las predicciones de precipitación estacional extremas (seca y lluviosa). Los métodos predWTD y FResampler1 usados para desagregar los pronósticos de precipitación estacional en datos diarios, que serán usados como inputs en los modelos de cultivos, proporcionan una predicción comparable. Por lo tanto, ambos métodos parecen opciones factibles/viables para la vinculación de los pronósticos estacionales con modelos de simulación de cultivos para establecer predicciones de rendimiento o las necesidades de riego en el caso de maíz. El análisis del impacto en el margen bruto de los precios del grano de los dos cultivos (trigo y maíz) y el coste de riego (maíz) sugieren que la combinación de los precios de mercado previstos y la predicción climática estacional pueden ser una buena herramienta en la toma de decisiones de los agricultores, especialmente en predicciones secas y/o localidades con baja precipitación anual. Estos métodos permiten cuantificar los beneficios y riesgos de los agricultores ante una predicción climática estacional en la PI. Por lo tanto, seríamos capaces de establecer sistemas de alerta temprana y diseñar estrategias de adaptación del manejo del cultivo para aprovechar las condiciones favorables o reducir los efectos de condiciones adversas. La utilidad potencial de esta Tesis es la aplicación de las relaciones encontradas para predicción de cosechas de la próxima campaña agrícola. Una correcta predicción de los rendimientos podría ayudar a los agricultores a planear con antelación sus prácticas agronómicas y todos los demás aspectos relacionados con el manejo de los cultivos. Esta metodología se puede utilizar también para la predicción de las tendencias futuras de la variabilidad del rendimiento en la PI. Tanto los sectores públicos (mejora de la planificación agrícola) como privados (agricultores, compañías de seguros agrarios) pueden beneficiarse de esta mejora en la predicción de cosechas. ABSTRACT The present thesis constitutes a step forward in advancing of knowledge of the effects of climate variability on crops in the Iberian Peninsula (IP). It is well known that ocean temperature, particularly the tropical ocean, is one of the most convenient variables to be used as climate predictor. Oceans are considered as the principal heat storage of the planet due to the high heat capacity of water. When this energy is released, it alters the global atmospheric circulation regimes by teleconnection1 mechanisms. These changes in the general circulation of the atmosphere affect the regional temperature, precipitation, moisture, wind, etc., and those influence crop growth, development and yield. For the case of Europe, this implies that the atmospheric variability in a specific region is associated with the variability of others adjacent and/or remote regions as a consequence of Europe being affected by global circulations patterns which, in turn, are affected by oceanic patterns. The general objective of this Thesis is to analyze the variability of crop yields at climate time scales and its relation to the climate variability and teleconnections, as well as to evaluate their predictability. Moreover, this Thesis aims to establish a methodology to study the predictability of crop yield anomalies. The analysis focuses on wheat and maize as a reference crops for other field crops in the IP, for winter rainfed crops and summer irrigated crops respectively. Crop simulation experiments using a model chain methodology (climate + crop) are designed to evaluate the impacts of climate variability patterns on yield and its predictability. The present Thesis is structured in two parts. The first part is focused on the climate variability analyses, and the second part is an application of the quantitative crop forecasting for years that fulfill specific conditions identified in the first part. This Thesis is divided into 4 chapters, covering the specific objectives of the present research work. Part I. Climate variability analyses The first chapter shows an analysis of potential yield variability in one location, as a bioclimatic indicator of the El Niño teleconnections with Europe, putting forward its importance for improving predictability in both climate and agriculture. It also presents the chosen methodology to relate yield with atmospheric and oceanic variables. Crop yield is partially determined by atmospheric climate variability, which in turn depends on changes in the sea surface temperature (SST). El Niño is the leading mode of SST interannual variability, and its impacts extend worldwide. Nevertheless, the predictability of these impacts is controversial, especially those associated with European climate variability, which have been found to be non-stationary and non-linear. The study showed how potential2 crop yield obtained from reanalysis data and crop models serves as an alternative and more effective index of El Niño teleconnections because it integrates the nonlinearities between the climate variables in a unique time series. The relationships between El Niño and crop yield anomalies are more significant than the individual contributions of each of the atmospheric variables used as input in the crop model. Additionally, the non-stationarities between El Niño and European climate variability are more clearly detected when analyzing crop-yield variability. The understanding of this relationship allows for some predictability up to one year before the crop is harvested. This predictability is not constant, but depends on both high and low frequency modulation. The second chapter identifies the oceanic and atmospheric patterns of climate variability affecting summer cropping systems in the IP. Moreover, hypotheses about the eco-physiological mechanism behind crop response are presented. It is focused on an analysis of maize yield variability in IP for the whole twenty century, using a calibrated crop model at five contrasting Spanish locations and reanalyses climate datasets to obtain long time series of potential yield. The study tests the use of reanalysis data for obtaining only climate dependent time series of simulated crop yield for the whole region, and to use these yield to analyze the influences of oceanic and atmospheric patterns. The results show a good reliability of reanalysis data. The spatial distribution of the leading principal component of yield variability shows a similar behaviour over all the studied locations in the IP. The strong linear correlation between El Niño index and yield is remarkable, being this relation non-stationary on time, although the air temperature-yield relationship remains on time, being the highest influences during grain filling period. Regarding atmospheric patterns, the summer Scandinavian pattern has significant influence on yield in IP. The third chapter identifies the oceanic and atmospheric patterns of climate variability affecting winter cropping systems in the IP. Also, hypotheses about the eco-physiological mechanism behind crop response are presented. It is focused on an analysis of rainfed wheat yield variability in IP. Climate variability is the main driver of changes in crop growth, development and yield, especially for rainfed production systems. In IP, wheat yields are strongly dependent on seasonal rainfall amount and temporal distribution of rainfall during the growing season. The major source of precipitation interannual variability in IP is the North Atlantic Oscillation (NAO) which has been related in part with changes in the Tropical Pacific (El Niño) and Atlantic (TNA) sea surface temperature (SST). The existence of some predictability has encouraged us to analyze the possible predictability of the wheat yield in the IP using SSTs anomalies as predictor. For this purpose, a crop model with a site specific calibration for the Northeast of IP and reanalysis climate datasets have been used to obtain long time series of attainable wheat yield and relate their variability with SST anomalies. The results show that El Niño and TNA influence rainfed wheat development and yield in IP and these impacts depend on the concurrent state of the NAO. Although crop-SST relationships do not equally hold on during the whole analyzed period, they can be explained by an understood and stationary ecophysiological mechanism. During the second half of the twenty century, the positive (negative) TNA index is associated to a negative (positive) phase of NAO, which exerts a positive (negative) influence on minimum temperatures (Tmin) and precipitation (Prec) during winter and, thus, yield increases (decreases) in IP. In relation to El Niño, the highest correlation takes place in the period 1981-2001. For these decades, high (low) yields are associated with an El Niño to La Niña (La Niña to El Niño) transitions or to El Niño events finishing. For these events, the regional associated atmospheric pattern resembles the NAO, which also influences directly on the maximum temperatures (Tmax) and precipitation experienced by the crop during flowering and grain filling. The co-effects of the two teleconnection patterns help to increase (decrease) the rainfall and decrease (increase) Tmax in IP, thus on increase (decrease) wheat yield. Part II. Crop forecasting The last chapter analyses the potential benefits for wheat and maize yields prediction from using seasonal climate forecasts (precipitation), and explores methods to apply such a climate forecast to crop models. Seasonal climate prediction has significant potential to contribute to the efficiency of agricultural management, and to food and livelihood security. Climate forecasts come in different forms, but probabilistic. For this purpose, two methods were evaluated and applied for disaggregating seasonal climate forecast into daily weather realizations: 1) a conditioned stochastic weather generator (predictWTD) and 2) a simple forecast probability resampler (FResampler1). The two methods were evaluated in a case study where the impacts of three scenarios of seasonal rainfall forecasts on rainfed wheat yield, on irrigation requirements and yields of maize in IP were analyzed. In addition, we estimated the economic margins and production risks associated with extreme scenarios of seasonal rainfall forecasts (dry and wet). The predWTD and FResampler1 methods used for disaggregating seasonal rainfall forecast into daily data needed by the crop simulation models provided comparable predictability. Therefore both methods seem feasible options for linking seasonal forecasts with crop simulation models for establishing yield forecasts or irrigation water requirements. The analysis of the impact on gross margin of grain prices for both crops and maize irrigation costs suggests the combination of market prices expected and the seasonal climate forecast can be a good tool in farmer’s decision-making, especially on dry forecast and/or in locations with low annual precipitation. These methodologies would allow quantifying the benefits and risks of a seasonal weather forecast to farmers in IP. Therefore, we would be able to establish early warning systems and to design crop management adaptation strategies that take advantage of favorable conditions or reduce the effect of adverse conditions. The potential usefulness of this Thesis is to apply the relationships found to crop forecasting on the next cropping season, suggesting opportunity time windows for the prediction. The methodology can be used as well for the prediction of future trends of IP yield variability. Both public (improvement of agricultural planning) and private (decision support to farmers, insurance companies) sectors may benefit from such an improvement of crop forecasting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pest management practices that rely on pesticides are growing increasingly less effective and environmentally inappropriate in many cases and the search of alternatives is under focus nowadays. Exclusion of pests from the crop by means of pesticide-treated screens can be an eco-friendly method to protect crops, especially if pests are vectors of important diseases. The mesh size of nets is crucial to determine if insects can eventually cross the barrier or exclude them because there is a great variation in insect size depending on the species. Long-lasting insecticide-treated (LLITN) nets, factory pre-treated, have been used since years to fight against mosquitoes vector of malaria and are able to retain their biological efficacy under field for 3 years. In agriculture, treated nets with different insecticides have shown efficacy in controlling some insects and mites, so they seem to be a good tool in helping to solve some pest problems. However, treated nets must be carefully evaluated because can diminish air flow, increase temperature and humidity and decrease light transmission, which may affect plant growth, pests and natural enemies. As biological control is considered a key factor in IPM nowadays, the potential negative effects of treated nets on natural enemies need to be studied carefully. In this work, the effects of a bifentrhin-treated net (3 g/Kg) (supplied by the company Intelligent Insect Control, IIC) on natural enemies of aphids were tested on a cucumber crop in Central Spain in autumn 2011. The crop was sown in 8x6.5 m tunnels divided in 2 sealed compartments with control or treated nets, which were simple yellow netting with 25 mesh (10 x 10 threads/cm2; 1 x 1 mm hole size). Pieces of 2 m high of the treated-net were placed along the lateral sides of one of the two tunnel compartments in each of the 3 available tunnels (replicates); the rest was covered by a commercial untreated net of a similar mesh. The pest, Aphis gossypii Glover (Aphidae), the parasitoid Aphidius colemani (Haliday) (Braconidae) and the predator Adalia bipunctata L. (Coccinellidae) were artificially introduced in the crop. Weekly sampling was done determining the presence or absence of the pest and the natural enemies (NE) in the 42 plants/compartment as well as the number of insects in 11 marked plants. Environmental conditions (temperature, relative humidity, UV and PAR radiation) were recorded. Results show that when aphids were artificially released inside the tunnels, neither its number/plant nor their distribution was affected by the treated net. A lack of negative effect of the insecticide-treated net on natural enemies was also observed. Adalia bipunctata did not establish in the crop and only a short term control of aphids was observed one week after release. On the other hand, A. colemani did establish in the crop and a more long-term effect on the numbers of aphids/plant was detected irrespective of the type of net. KEY WORDS: bifenthrin-treated net, Adalia bipunctata, Aphidius colemani, Aphis gossypii, semi-field

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a work whose objective is, first, to quantify the potential of the triticale biomass existing in each of the agricultural regions in the Madrid Community through a crop simulation model based on regression techniques and multiple correlation. Second, a methodology for defining which area has the best conditions for the installation of electricity plants from biomass has been described and applied. The study used a methodology based on compromise programming in a discrete multicriteria decision method (MDM) context. To make a ranking, the following criteria were taken into account: biomass potential, electric power infrastructure, road networks, protected spaces, and urban nuclei surfaces. The results indicate that, in the case of the Madrid Community, the Campiña region is the most suitable for setting up plants powered by biomass. A minimum of 17,339.9 tons of triticale will be needed to satisfy the requirements of a 2.2 MW power plant. The minimum range of action for obtaining the biomass necessary in Campiña region would be 6.6 km around the municipality of Algete, based on Geographic Information Systems. The total biomass which could be made available in considering this range in this region would be 18,430.68 t.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cover crop selection should be oriented to the achievement of specific agrosystem benefits. The covercrop, catch crop, green manure and fodder uses were identified as possible targets for selection. Theobjective was to apply multi-criteria decision analysis to evaluate different species (Hordeum vulgareL., Secale cereale L., ×Triticosecale Whim, Sinapis alba L., Vicia sativa L.) and cultivars according to theirsuitability to be used as cover crops in each of the uses. A field trial with 20 cultivars of the five specieswas conducted in Central Spain during two seasons (October?April). Measurements of ground cover, cropbiomass, N uptake, N derived from the atmosphere, C/N, dietary fiber content and residue quality werecollected. Aggregation of these variables through utility functions allowed ranking species and cultivarsfor each usage. Grasses were the most suitable for the cover crop, catch crop and fodder uses, while thevetches were the best as green manures. The mustard attained high ranks as cover and catch crop the firstseason, but the second decayed due to low performance in cold winters. Mustard and vetches obtainedworse rankings than grasses as fodder. Hispanic was the most suitable barley cultivar as cover and catchcrop, and Albacete as fodder. The triticale Titania attained the highest rank as cover and catch crop andfodder. Vetches Aitana and BGE014897 showed good aptitudes as green manures and catch crops. Thisanalysis allowed comparison among species and cultivars and might provide relevant information forcover crops selection and management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of cover crops in the intercrop period may provide a broad range of ecosystem services derived from the multiple functions they can perform, such as erosion control, recycling of nutrients or forage source. However, the achievement of these services in a particular agrosystem is not always required at the same time or to the same degree. Thus, species selection and definition of targeted objectives is critical when growing cover crops. The goal of the current work was to describe the traits that determine the suitability of five species (barley, rye, triticale, mustard and vetch) for cover cropping. A field trial was established during two seasons (October to April) in Madrid (central Spain). Ground cover and biomass were monitored at regular intervals during each growing season. A Gompertz model characterized ground cover until the decay observed after frosts, while biomass was fitted to Gompertz, logistic and linear-exponential equations. At the end of the experiment, carbon (C), nitrogen (N), and fibre (neutral detergent, acid and lignin) contents, and the N fixed by the legume were determined. The grasses reached the highest ground cover (83–99%) and biomass (1226–1928 g/m2) at the end of the experiment. With the highest C:N ratio (27–39) and dietary fibre (527–600 mg/g) and the lowest residue quality (~680 mg/g), grasses were suitable for erosion control, catch crop and fodder. The vetch presented the lowest N uptake (2·4 and 0·7 g N/m2) due to N fixation (9·8 and 1·6 g N/m2) and low biomass accumulation. The mustard presented high N uptake in the warm year and could act as a catch crop, but low fodder capability in both years. The thermal time before reaching 30% ground cover was a good indicator of early coverage species. Variable quantification allowed finding variability among the species and provided information for further decisions involving cover crop selection and management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study explored the utility of the impact response surface (IRS) approach for investigating model ensemble crop yield responses under a large range of changes in climate. IRSs of spring and winter wheat Triticum aestivum yields were constructed from a 26-member ensemble of process-based crop simulation models for sites in Finland, Germany and Spain across a latitudinal transect. The sensitivity of modelled yield to systematic increments of changes in temperature (-2 to +9°C) and precipitation (-50 to +50%) was tested by modifying values of baseline (1981 to 2010) daily weather, with CO2 concentration fixed at 360 ppm. The IRS approach offers an effective method of portraying model behaviour under changing climate as well as advantages for analysing, comparing and presenting results from multi-model ensemble simulations. Though individual model behaviour occasionally departed markedly from the average, ensemble median responses across sites and crop varieties indicated that yields decline with higher temperatures and decreased precipitation and increase with higher precipitation. Across the uncertainty ranges defined for the IRSs, yields were more sensitive to temperature than precipitation changes at the Finnish site while sensitivities were mixed at the German and Spanish sites. Precipitation effects diminished under higher temperature changes. While the bivariate and multi-model characteristics of the analysis impose some limits to interpretation, the IRS approach nonetheless provides additional insights into sensitivities to inter-model and inter-annual variability. Taken together, these sensitivities may help to pinpoint processes such as heat stress, vernalisation or drought effects requiring refinement in future model development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of atmospheric aerosols and regional haze from air pollution on the yields of rice and winter wheat grown in China is assessed. The assessment is based on estimates of aerosol optical depths over China, the effect of these optical depths on the solar irradiance reaching the earth’s surface, and the response of rice and winter wheat grown in Nanjing to the change in solar irradiance. Two sets of aerosol optical depths are presented: one based on a coupled, regional climate/air quality model simulation and the other inferred from solar radiation measurements made over a 12-year period at meteorological stations in China. The model-estimated optical depths are significantly smaller than those derived from observations, perhaps because of errors in one or both sets of optical depths or because the data from the meteorological stations has been affected by local pollution. Radiative transfer calculations using the smaller, model-estimated aerosol optical depths indicate that the so-called “direct effect” of regional haze results in an ≈5–30% reduction in the solar irradiance reaching some of China’s most productive agricultural regions. Crop-response model simulations suggest an ≈1:1 relationship between a percentage increase (decrease) in total surface solar irradiance and a percentage increase (decrease) in the yields of rice and wheat. Collectively, these calculations suggest that regional haze in China is currently depressing optimal yields of ≈70% of the crops grown in China by at least 5–30%. Reducing the severity of regional haze in China through air pollution control could potentially result in a significant increase in crop yields and help the nation meet its growing food demands in the coming decades.