894 resultados para cost optimisation
Resumo:
We present a novel way of interacting with an immersive virtual environment which involves inexpensive motion-capture using the Wii Remote®. A software framework is also presented to visualize and share this information across two remote CAVETM-like environments. The resulting applications can be used to assist rehabilitation by sending motion information across remote sites. The application’s software and hardware components are scalable enough to be used on desktop computer when home-based rehabilitation is preferred.
Resumo:
Hidden Markov Models (HMMs) have been successfully applied to different modelling and classification problems from different areas over the recent years. An important step in using HMMs is the initialisation of the parameters of the model as the subsequent learning of HMM’s parameters will be dependent on these values. This initialisation should take into account the knowledge about the addressed problem and also optimisation techniques to estimate the best initial parameters given a cost function, and consequently, to estimate the best log-likelihood. This paper proposes the initialisation of Hidden Markov Models parameters using the optimisation algorithm Differential Evolution with the aim to obtain the best log-likelihood.
Resumo:
A tunable radial basis function (RBF) network model is proposed for nonlinear system identification using particle swarm optimisation (PSO). At each stage of orthogonal forward regression (OFR) model construction, PSO optimises one RBF unit's centre vector and diagonal covariance matrix by minimising the leave-one-out (LOO) mean square error (MSE). This PSO aided OFR automatically determines how many tunable RBF nodes are sufficient for modelling. Compared with the-state-of-the-art local regularisation assisted orthogonal least squares algorithm based on the LOO MSE criterion for constructing fixed-node RBF network models, the PSO tuned RBF model construction produces more parsimonious RBF models with better generalisation performance and is computationally more efficient.
Nonlinear system identification using particle swarm optimisation tuned radial basis function models
Resumo:
A novel particle swarm optimisation (PSO) tuned radial basis function (RBF) network model is proposed for identification of non-linear systems. At each stage of orthogonal forward regression (OFR) model construction process, PSO is adopted to tune one RBF unit's centre vector and diagonal covariance matrix by minimising the leave-one-out (LOO) mean square error (MSE). This PSO aided OFR automatically determines how many tunable RBF nodes are sufficient for modelling. Compared with the-state-of-the-art local regularisation assisted orthogonal least squares algorithm based on the LOO MSE criterion for constructing fixed-node RBF network models, the PSO tuned RBF model construction produces more parsimonious RBF models with better generalisation performance and is often more efficient in model construction. The effectiveness of the proposed PSO aided OFR algorithm for constructing tunable node RBF models is demonstrated using three real data sets.
An empirical study of process-related attributes in segmented software cost-estimation relationships
Resumo:
Parametric software effort estimation models consisting on a single mathematical relationship suffer from poor adjustment and predictive characteristics in cases in which the historical database considered contains data coming from projects of a heterogeneous nature. The segmentation of the input domain according to clusters obtained from the database of historical projects serves as a tool for more realistic models that use several local estimation relationships. Nonetheless, it may be hypothesized that using clustering algorithms without previous consideration of the influence of well-known project attributes misses the opportunity to obtain more realistic segments. In this paper, we describe the results of an empirical study using the ISBSG-8 database and the EM clustering algorithm that studies the influence of the consideration of two process-related attributes as drivers of the clustering process: the use of engineering methodologies and the use of CASE tools. The results provide evidence that such consideration conditions significantly the final model obtained, even though the resulting predictive quality is of a similar magnitude.
Resumo:
We introduce and describe the Multiple Gravity Assist problem, a global optimisation problem that is of great interest in the design of spacecraft and their trajectories. We discuss its formalization and we show, in one particular problem instance, the performance of selected state of the art heuristic global optimisation algorithms. A deterministic search space pruning algorithm is then developed and its polynomial time and space complexity derived. The algorithm is shown to achieve search space reductions of greater than six orders of magnitude, thus reducing significantly the complexity of the subsequent optimisation.
Resumo:
The creation of Wireless Personal Area Networks (WPANs) offers the Consumer Electronics industry a mechanism to truly unwire consumer products, leading to portability and ease of installation as never seen before. WPAN's can offer data-rates exceeding those that are required to convey high quality broadcast video, thus users can easily connect to high quality video for multimedia presentations in education, libraries, advertising, or have a wireless connection at home. There have been many WPAN proposals, but this paper concentrates on ECMA-368 as this standard has the largest industrial and implementers' forum backing. With the aim to effective consumer electronic define and create cost equipment this paper discusses the technology behind ECMA-368 physical layer, the design freedom availabilities, the required processing, buffer memory requirements and implementation considerations while concentrating on supporting all the offered data-rates(1).
Resumo:
In this paper we consider bilinear forms of matrix polynomials and show that these polynomials can be used to construct solutions for the problems of solving systems of linear algebraic equations, matrix inversion and finding extremal eigenvalues. An almost Optimal Monte Carlo (MAO) algorithm for computing bilinear forms of matrix polynomials is presented. Results for the computational costs of a balanced algorithm for computing the bilinear form of a matrix power is presented, i.e., an algorithm for which probability and systematic errors are of the same order, and this is compared with the computational cost for a corresponding deterministic method.
Resumo:
We develop a particle swarm optimisation (PSO) aided orthogonal forward regression (OFR) approach for constructing radial basis function (RBF) classifiers with tunable nodes. At each stage of the OFR construction process, the centre vector and diagonal covariance matrix of one RBF node is determined efficiently by minimising the leave-one-out (LOO) misclassification rate (MR) using a PSO algorithm. Compared with the state-of-the-art regularisation assisted orthogonal least square algorithm based on the LOO MR for selecting fixednode RBF classifiers, the proposed PSO aided OFR algorithm for constructing tunable-node RBF classifiers offers significant advantages in terms of better generalisation performance and smaller model size as well as imposes lower computational complexity in classifier construction process. Moreover, the proposed algorithm does not have any hyperparameter that requires costly tuning based on cross validation.
Resumo:
This paper introduces PSOPT, an open source optimal control solver written in C++. PSOPT uses pseudospectral and local discretizations, sparse nonlinear programming, automatic differentiation, and it incorporates automatic scaling and mesh refinement facilities. The software is able to solve complex optimal control problems including multiple phases, delayed differential equations, nonlinear path constraints, interior point constraints, integral constraints, and free initial and/or final times. The software does not require any non-free platform to run, not even the operating system, as it is able to run under Linux. Additionally, the software generates plots as well as LATEX code so that its results can easily be included in publications. An illustrative example is provided.
Resumo:
This article describes an application of computers to a consumer-based production engineering environment. Particular consideration is given to the utilisation of low-cost computer systems for the visual inspection of components on a production line in real time. The process of installation is discussed, from identifying the need for artificial vision and justifying the cost, through to choosing a particular system and designing the physical and program structure.