981 resultados para cosmological parameters from CMBR
Resumo:
Objective: The purpose of this in vitro study was to investigate using the scanning electron microscope (SEM) the ultrastructural morphological changes of the radicular dentine surface after irradiation with 980-nm diode laser energy at different parameters and angles of incidence. Background Data: There have been limited reports on the effects of diode laser irradiation at 980 nm on radicular dentin morphology. Materials and Methods: Seventy-two maxillary canines were sectioned and roots were biomechanically prepared using K3 rotary instruments. The teeth were irrigated with 2 mL of distilled water between files and final irrigation was performed with 10 mL of distilled water. The teeth were then randomly divided into five groups (n = 8 each) according to their diode laser parameters: Group 1: no irradiation (control); group 2: 1.5 W/continuous wave (CW) emission (the manufacturer's parameters); group 3: 1.5 W/100 Hz; group 4: 3 W/CW; and group 5: 3 W/100 Hz. Laser energy was applied with helicoid movements (parallel to the canal walls) for 20 sec. Eight additional teeth for each group were endodontically prepared and split longitudinally and irradiation was applied perpendicularly to the root surface. Results: Statistical analysis showed no difference between the root canal thirds irradiated with the 980-nm diode laser, and similar results between the parameters 1.5 W/CW and 3 W/100 Hz (p > 0.05). Conclusion: When considering different output powers and delivery modes our results showed that changes varied from smear layer removal to dentine fusion.
Resumo:
Objective: The purpose of this study was to evaluate the ablation capacity of different energies and pulse repetition rates of Er:YAG laser energy on primary molar enamel, by assessing mass loss and by analyzing the surface morphology with scanning electron microscopy. Background Data: Previous studies have demonstrated the capacity of the Er:YAG laser to ablate enamel substrate. Methods: Forty-two sound primary molars were bisected in a mesiodistal direction. The enamel surfaces were flattened and their initial mass (in milligrams) was obtained. An area of 4 mm(2) was delimited. The specimens were randomly assigned to 12 groups according to the combination of energy (160, 200, 250, and 300 mJ) and pulse repetition rate (2, 3, and 4 Hz). Er: YAG laser irradiation was performed on each specimen for 20 sec. After irradiation, the final mass was obtained and specimens were prepared for examination with scanning electron microscopy. The data obtained by subtracting the final mass from the initial mass were statistically analyzed using ANOVA and the Tukey test (p < 0.05). Results: The pulse repetition rate of 4 Hz provided greater mass loss, different from that seen with 2 Hz, and similar to that seen with 3 Hz. The energy level of 300 mJ resulted in greater mass loss, similar to that seen with 200 and 250 mJ. Scanning electron photomicrographs showed that there was non-selective enamel removal, with fused and cracked areas in all specimens. Conclusion: The parameters of 200 mJ and 2 Hz produced a good ablation rate with fewer surface alterations in primary molar enamel.
Resumo:
The objective of this study was to estimate genetic parameters for pre-weaning traits of Braunvieh cattle raised under tropical conditions in Brazil. The weight and weight gain parameters were birth weight (BW, N = 9955), weight at 120 days of age (W120, N = 5901), weaning weight at 205 days (WW, N = 6970), weight gain from birth to 205 days (GAIN205, N = 6013), weight gain from birth to 120 days (GAIN120, N = 5135), and weight gain from 120 to 205 days (GAIN85, N = 4482). Variance components were estimated using the animal model with the MTDFREML software. The relationship matrix included 35,188 animals; phenotypic measures were available for 18,688. Direct and maternal heritability increased from birth to weaning, with estimates of 0.23 +/- 0.037, 0.25 +/- 0.050, 0.41 +/- 0.059 for direct heritability for BW, W120 and WW, respectively, 0.08 +/- 0.012, 0.15 +/- 0.032, 0.22 +/- 0.036 for maternal genetic effects, and 0.18, 0.14 and 0.16 for total heritability estimates. For pre-weaning gains, estimates of heritability were 0.36 +/- 0.059, 0.30 +/- 0.059, 0.12 +/- 0.035 for direct genetic effects of the traits GAIN205, GAIN120 and GAIN85, respectively, 0.23 +/- 0.038, 0.17 +/- 0.037, 0.03 +/- 0.029 for estimates of maternal heritability, and 0.12, 0.13, 0.16 for total heritability, respectively. Genetic correlations between weights were greater between measures taken at shorter intervals. This information can be used to optimize the design of programs for genetic improvement of Braunvieh cattle raised under tropical conditions.
Resumo:
The objective of the present study was to estimate (co)variance components for length of productive life (LPL) and some alternative reproductive traits of 6-year-old Nellore cattle. The data set contained 57,410 records for age at first calving from Nellore females and was edited to remove animal records with uncertain paternity and cows with just one piece of calving information. Only animals with age at first calving ranging from 23 to 48 months and calving intervals between 11 and 24 months were kept for analysis. LPL and life production ( LP) were used to describe productive life. LPL was defined as the number of months a cow was kept in the herd until she was 6 years old, given that she was alive at first calving and LP was defined as total number of calves in that time. Four traits were used to describe reproductive traits: two breeding efficiencies on original scale were estimated using Wilcox and Tomar functions (BEW and BET, respectively), and two breeding efficiencies transformed (ASBEW and ASBET, respectively), using the function [arcsine (square root (BEi/100))]. Estimates of heritability for measures of LPL and LP were low and ranged from 0.04 to 0.05. Estimates of heritability for breeding efficiencies on original and transformed scales oscillated from 0.18 to 0.32. Estimates of genetic correlations ranged from -0.57 to 0.79 for LPL and other traits and from 0.28 to 0.63 for LP and other traits.
Resumo:
Genetic parameters for traits related to postweaning growth in Braunvieh cattle, reared under tropical and sub-tropical conditions in Brazil, were studied. Weight traits were weight at 365 days of age (W365, N = 4055), at 450 days (W450, N = 3453), and at 550 days (W550, N = 1946), while weight gains were gain from weaning to 365 days of age (WGW365, N = 3060), from weaning to 450 days (WGW450, N = 2764), from weaning to 550 days (WGW550, N = 1531), from 365 to 550 days of age (WG365550, N = 1528), from 365 to 450 days (WG365450, N = 2401), and from 450 to 550 days (WG450550, N = 1563). A full animal model was used for estimating the variance components, using the MTDFREML software. The dataset contained 18,688 animals with phenotypic measures and 35,188 animals in the relationship matrix. Heritability estimates for postweaning weights decreased with age. For W365, W450 and W550, respectively, the direct heritability estimates were 0.29 +/- 0.061, 0.25 +/- 0.057, 0.16 +/- 0.060, maternal heritability was 0.20 +/- 0.035, 0.18 +/- 0.035, 0.13 +/- 0.052, and total heritability was 0.30, 0.35, 0.26. In this breed, maternal influence was found to be important up to 550 days of age. The greater genetic correlations between weights were observed for weights measured at shorter intervals. A large environmental effect was observed for weight gain between weaning and 550 days; this effect was greater for the gains between 365 and 550 days.
SSSPM J1102-3431 brown dwarf characterization from accurate proper motion and trigonometric parallax
Resumo:
Context. In 2005, Scholz and collaborators discovered, in a proper motion survey, a young brown dwarf SSSPM J1102-3431 (SSSPM J1102) of spectral type M8.5, probable member of the TW Hydrae Association and possible companion of the T Tauri star TWHya. The physical characterization of SSSPM J1102 was based on the hypothesis that it forms a binary system with TWHya. The recent discovery of a probable giant planet with a very short-period inside the TW Hya protoplanetary disk, as well as a disk around SSSPM J1102, make it especially interesting and important to measure well the physical parameters of SSSPM J1102. Aims. Trigonometric parallax and proper motion measurements of SSSPM J1102 are necessary to test for TWA membership and, thus, to determine the mass and age of this young brown dwarf and the possibility that it forms a wide binary system with TW Hya. Methods. Two years of regular observations at the ESO NTT/SUSI2 telescope have enabled us to determine the trigonometric parallax and proper motion of SSSPM J1102. Results. With our accurate distance determination of 55.2(-1.4)(+1.6) pc and proper motions of (-67.2, -14.0) +/- 0.6 mas/yr, we could confirm SSSPM J1102 as a very probable member of TWA. Assuming the TW Hydrae association age of 5-10 Myr, the evolutionary models compared to the photometry of this young brown dwarf indicate a mass of M = 25 +/- 5 M(Jup) and an effective temperature T(eff) = 2550 +/- 100 K. Conclusions. Our parallax and proper motion determination allow us to precisely describe the physical properties of this low mass object and to confirm its TWA membership. Our results indicate that SSSPMJ1102 may be a very wide separation companion of the star TW Hya.
The qWR star HD 45166 - II. Fundamental stellar parameters and evidence of a latitude-dependent wind
Resumo:
Context. The enigmatic object HD 45166 is a qWR star in a binary system with an orbital period of 1.596 day, and presents a rich emission-line spectrum in addition to absorption lines from the companion star (B7 V). As the system inclination is very small (i = 0.77 degrees +/- 0.09 degrees), HD 45166 is an ideal laboratory for wind-structure studies. Aims. The goal of the present paper is to determine the fundamental stellar and wind parameters of the qWR star. Methods. A radiative transfer model for the wind and photosphere of the qWR star was calculated using the non-LTE code CMFGEN. The wind asymmetry was also analyzed using a recently-developed version of CMFGEN to compute the emerging spectrum in two-dimensional geometry. The temporal-variance spectrum (TVS) was calculated to study the line-profile variations. Results. Abundances and stellar and wind parameters of the qWR star were obtained. The qWR star has an effective temperature of T(eff) = 50 000 +/- 2000 K, a luminosity of log(L/L(circle dot)) = 3.75 +/- 0.08, and a corresponding photospheric radius of R(phot) = 1.00 R(circle dot). The star is helium-rich (N(H)/N(He) = 2.0), while the CNO abundances are anomalous when compared either to solar values, to planetary nebulae, or to WR stars. The mass-loss rate is. M = 2.2 x 10(-7) M(circle dot) yr(-1), and the wind terminal velocity is v(infinity) = 425 km s(-1). The comparison between the observed line profiles and models computed under different latitude-dependent wind densities strongly suggests the presence of an oblate wind density enhancement, with a density contrast of at least 8: 1 from equator to pole. If a high velocity polar wind is present (similar to 1200 km s(-1)), the minimum density contrast is reduced to 4:1. Conclusions. The wind parameters determined are unusual when compared to O-type stars or to typical WR stars. While for WR stars v(infinity)/v(esc) > 1.5, in the case of HD 45166 it is much smaller (v(infinity)/v(esc) = 0.32). In addition, the efficiency of momentum transfer is eta = 0.74, which is at least 4 times smaller than in a typical WR. We find evidence for the presence of a wind compression zone, since the equatorial wind density is significantly higher than the polar wind. The TVS supports the presence of such a latitude-dependent wind and a variable absorption/scattering gas near the equator.
Resumo:
We present a re-analysis of the Geneva-Copenhagen survey, which benefits from the infrared flux method to improve the accuracy of the derived stellar effective temperatures and uses the latter to build a consistent and improved metallicity scale. Metallicities are calibrated on high-resolution spectroscopy and checked against four open clusters and a moving group, showing excellent consistency. The new temperature and metallicity scales provide a better match to theoretical isochrones, which are used for a Bayesian analysis of stellar ages. With respect to previous analyses, our stars are on average 100 K hotter and 0.1 dex more metal rich, which shift the peak of the metallicity distribution function around the solar value. From Stromgren photometry we are able to derive for the first time a proxy for [alpha/Fe] abundances, which enables us to perform a tentative dissection of the chemical thin and thick disc. We find evidence for the latter being composed of an old, mildly but systematically alpha-enhanced population that extends to super solar metallicities, in agreement with spectroscopic studies. Our revision offers the largest existing kinematically unbiased sample of the solar neighbourhood that contains full information on kinematics, metallicities, and ages and thus provides better constraints on the physical processes relevant in the build-up of the Milky Way disc, enabling a better understanding of the Sun in a Galactic context.
Resumo:
Aims. We present the analysis of the [alpha/Fe] abundance ratios for a large number of stars at several locations in the Milky Way bulge with the aim of constraining its formation scenario. Methods. We obtained FLAMES-GIRAFFE spectra (R = 22 500) at the ESO Very Large Telescope for 650 bulge red giant branch (RGB) stars and performed spectral synthesis to measure Mg, Ca, Ti, and Si abundances. This sample is composed of 474 giant stars observed in 3 fields along the minor axis of the Galactic bulge and at latitudes b = -4 degrees, b = -6 degrees, b = -12 degrees. Another 176 stars belong to a field containing the globular cluster NGC 6553, located at b = -3 degrees and 5 degrees away from the other three fields along the major axis. Stellar parameters and metallicities for these stars were presented in Zoccali et al. (2008, A&A, 486, 177). We have also re-derived stellar parameters and abundances for the sample of thick and thin disk red giants analyzed in Alves-Brito et al. (2010, A&A, 513, A35). Therefore using a homogeneous abundance database for the bulge, thick and thin disk, we have performed a differential analysis minimizing systematic errors, to compare the formation scenarios of these Galactic components. Results. Our results confirm, with large number statistics, the chemical similarity between the Galactic bulge and thick disk, which are both enhanced in alpha elements when compared to the thin disk. In the same context, we analyze [alpha/Fe] vs. [Fe/H] trends across different bulge regions. The most metal rich stars, showing low [alpha/Fe] ratios at b = -4 degrees disappear at higher Galactic latitudes in agreement with the observed metallicity gradient in the bulge. Metal-poor stars ([Fe/H] < -0.2) show a remarkable homogeneity at different bulge locations. Conclusions. We have obtained further constrains for the formation scenario of the Galactic bulge. A metal-poor component chemically indistinguishable from the thick disk hints for a fast and early formation for both the bulge and the thick disk. Such a component shows no variation, neither in abundances nor kinematics, among different bulge regions. A metal-rich component showing low [alpha/Fe] similar to those of the thin disk disappears at larger latitudes. This allows us to trace a component formed through fast early mergers (classical bulge) and a disk/bar component formed on a more extended timescale.
Resumo:
In this paper, the CoRoT Exoplanet Science Team announces its 14th discovery. Herein, we discuss the observations and analyses that allowed us to derive the parameters of this system: a hot Jupiter with a mass of 7.6 +/- 0.6 Jupiter masses orbiting a solar-type star (F9V) with a period of only 1.5 d, less than 5 stellar radii from its parent star. It is unusual for such a massive planet to have such a small orbit: only one other known higher mass exoplanet orbits with a shorter period.
Resumo:
The CoRoT exoplanet science team announces the discovery of CoRoT-11b, a fairly massive hot-Jupiter transiting a V = 12.9 mag F6 dwarf star (M(*) = 1.27 +/- 0.05 M(circle dot), R(*) = 1.37 +/- 0.03 R(circle dot), T(eff) = 6440 +/- 120 K), with an orbital period of P = 2.994329 +/- 0.000011 days and semi-major axis a = 0.0436 +/- 0.005 AU. The detection of part of the radial velocity anomaly caused by the Rossiter-McLaughlin effect shows that the transit-like events detected by CoRoT are caused by a planet-sized transiting object in a prograde orbit. The relatively high projected rotational velocity of the star (upsilon sin i(star) = 40 +/- 5 km s(-1)) places CoRoT-11 among the most rapidly rotating planet host stars discovered so far. With a planetary mass of M(p) = 2.33 +/- 0.34 M(Jup) and radius R(p) = 1.43 +/- 0.03 R(Jup), the resulting mean density of CoRoT-11b (rho(p) = 0.99 +/- 0.15 g/cm(3)) can be explained with a model for an inflated hydrogen-planet with a solar composition and a high level of energy dissipation in its interior.
Resumo:
We announce the discovery of the transiting planet CoRoT-13b. Ground-based follow-up in CFHT and IAC80 confirmed CoRoT's observations. The mass of the planet was measured with the HARPS spectrograph and the properties of the host star were obtained analyzing HIRES spectra from the Keck telescope. It is a hot Jupiter-like planet with an orbital period of 4.04 days, 1.3 Jupiter masses, 0.9 Jupiter radii, and a density of 2.34 g cm(-3). It orbits a G0V star with T(eff) = 5 945 K, M(*) = 1.09 M(circle dot), R(*) = 1.01 R(circle dot), solar metallicity, a lithium content of +1.45 dex, and an estimated age of between 0.12 and 3.15 Gyr. The lithium abundance of the star is consistent with its effective temperature, activity level, and age range derived from the stellar analysis. The density of the planet is extreme for its mass, implies that heavy elements are present with a mass of between about 140 and 300 M(circle plus).
Resumo:
The mass function of cluster-size halos and their redshift distribution are computed for 12 distinct accelerating cosmological scenarios and confronted to the predictions of the conventional flat Lambda CDM model. The comparison with Lambda CDM is performed by a two-step process. First, we determine the free parameters of all models through a joint analysis involving the latest cosmological data, using supernovae type Ia, the cosmic microwave background shift parameter, and baryon acoustic oscillations. Apart from a braneworld inspired cosmology, it is found that the derived Hubble relation of the remaining models reproduces the Lambda CDM results approximately with the same degree of statistical confidence. Second, in order to attempt to distinguish the different dark energy models from the expectations of Lambda CDM, we analyze the predicted cluster-size halo redshift distribution on the basis of two future cluster surveys: (i) an X-ray survey based on the eROSITA satellite, and (ii) a Sunayev-Zeldovich survey based on the South Pole Telescope. As a result, we find that the predictions of 8 out of 12 dark energy models can be clearly distinguished from the Lambda CDM cosmology, while the predictions of 4 models are statistically equivalent to those of the Lambda CDM model, as far as the expected cluster mass function and redshift distribution are concerned. The present analysis suggests that such a technique appears to be very competitive to independent tests probing the late time evolution of the Universe and the associated dark energy effects.
Resumo:
Context. The space telescope CoRoT searches for transiting extrasolar planets by continuously monitoring the optical flux of thousands of stars in several fields of view. Aims. We report the discovery of CoRoT-10b, a giant planet on a highly eccentric orbit (e = 0.53 +/- 0.04) revolving in 13.24 days around a faint (V = 15.22) metal-rich K1V star. Methods. We used CoRoT photometry, radial velocity observations taken with the HARPS spectrograph, and UVES spectra of the parent star to derive the orbital, stellar, and planetary parameters. Results. We derive a radius of the planet of 0.97 +/- 0.07 R(Jup) and a mass of 2.75 +/- 0.16 M(Jup). The bulk density,rho(p) = 3.70 +/- 0.83 g cm(-3), is similar to 2.8 that of Jupiter. The core of CoRoT-10b could contain up to 240 M(circle plus) of heavy elements. Moving along its eccentric orbit, the planet experiences a 10.6-fold variation in insolation. Owing to the long circularisation time, tau(circ) > 7 Gyr, a resonant perturber is not required to excite and maintain the high eccentricity of CoRoT-10b.
Resumo:
Aims. We report the discovery of CoRoT-8b, a dense small Saturn-class exoplanet that orbits a K1 dwarf in 6.2 days, and we derive its orbital parameters, mass, and radius. Methods. We analyzed two complementary data sets: the photometric transit curve of CoRoT-8b as measured by CoRoT and the radial velocity curve of CoRoT-8 as measured by the HARPS spectrometer**. Results. We find that CoRoT-8b is on a circular orbit with a semi-major axis of 0.063 +/- 0.001 AU. It has a radius of 0.57 +/- 0.02 R(J), a mass of 0.22 +/- 0.03 M(J), and therefore a mean density of 1.6 +/- 0.1 g cm(-3). Conclusions. With 67% of the size of Saturn and 72% of its mass, CoRoT-8b has a density comparable to that of Neptune (1.76 g cm(-3)). We estimate its content in heavy elements to be 47-63 M(circle plus), and the mass of its hydrogen-helium envelope to be 7-23 M(circle plus). At 0.063 AU, the thermal loss of hydrogen of CoRoT-8b should be no more than similar to 0.1% over an assumed integrated lifetime of 3 Ga.