891 resultados para civil engineering and architecture
Resumo:
Basic experiments were conducted in a near full-scale broad-crested weir. Detailed velocity and pressure measurements were performed for two configurations. The results showed the rapid flow distribution at the upstream end of the weir, while an overhanging crest design may affect the flow field. The study showed further that large vortical structures might be observed immediately upstream of the weir and impact adversely on the overflow.
Resumo:
The following topics are dealt with: Requirements engineering; components; design; formal specification analysis; education; model checking; human computer interaction; software design and architecture; formal methods and components; software maintenance; software process; formal methods and design; server-based applications; review and testing; measurement; documentation; management and knowledge-based approaches.
Resumo:
Over the last twenty years, we have been continuously seeing R&D efforts and activities in developing optical fibre grating devices and technologies and exploring their applications for telecommunications, optical signal processing and smart sensing, and recently for medical care and biophotonics. In addition, we have also witnessed successful commercialisation of these R&Ds, especially in the area of fibre Bragg grating (FBG) based distributed sensor network systems and technologies for engineering structure monitoring in industrial sectors such as oil, energy and civil engineering. Despite countless published reports and papers and commercial realisation, we are still seeing significant and novel research activities in this area. This invited paper will give an overview on recent advances in fibre grating devices and their sensing applications with a focus on novel fibre gratings and their functions and grating structures in speciality fibres. The most recent developments in (i) femtosecond inscription for microfluidic/grating devices, (2) tilted grating based novel polarisation devices and (3) dual-peak long-period grating based DNA hybridisation sensors will be discussed.
Resumo:
The introduction of a micro-electronic based technology to the workplace has had a far reaching and widespread effect on the numbers and content of jobs. The importance of the implications of new technology were recognised by the trade unions, leading to a plethora of advice and literature in the late 70s and early 80s, notably the TUC 'Technology and Employment ' report. However, studies into the union response have consistently found an overall lack of influence by unions in the introduction of technology. Whilst the advent of new technology has coincided with an industrial relations climate of unprecedented hostility to union activity in the post-war period, there are structural weaknesses in unions in coming to terms with the process of technological change. In particular was the identification of a lack of suitable technological expertise. Addressing itself to this perceived weakness of the union response, this thesis is the outcome of a collaborative project between a national union and an academic institution. The thesis is based on detailed case studies concerning technology bargaining in the Civil Service and the response of the Civil and Public Services Associations (CPSA), the union that represents lower grade white collar civil servants. It is demonstrated that the application of expertise to union negotiators is insufficient on its own to extend union influence and that for unions to effectively come to terms with technology and influence its development requires a re-assessment across all spheres of union activity. It is suggested that this has repercussions for not only the internal organisation and quality of union policy formation and the extent, form and nature of collective bargaining with employer representatives, but also in the relationship with consumer and interest groups outside the traditional collective bargaining forum. Three policy options are developed in the thesis with the 'adversarial' and 'co~operative' options representing the more traditional reactive and passive forms of involvement. These are contrasted with an 'independent participative' form of involvement which was a 'pro-active' policy option and utilised the expertise of the Author in the CPSA's response to technological change.
Resumo:
Background: Stereotypically perceived to be an ‘all male’ occupation, engineering has for many years failed to attract high numbers of young women [1,2]. The reasons for this are varied, but tend to focus on misconceptions of the profession as being more suitable for men. In seeking to investigate this issue a participatory research approach was adopted [3] in which two 17 year-old female high school students interviewed twenty high school girls. Questions focused on the girls’ perceptions of engineering as a study and career choice. The findings were recorded and analysed using qualitative techniques. The study identified three distinctive ‘influences’ as being pivotal to girls’ perceptions of engineering; pedagogical; social; and, familial. Pedagogical Influences: Pedagogical influences tended to focus on science and maths. In discussing science, the majority of the girls identified biology and chemistry as more ‘realistic’ whilst physics was perceived to more suitable for boys. The personality of the teacher, and how a particular subject is taught, proved to be important influences shaping opinions. Social Influences: Societal influences were reflected in the girls’ career choice with the majority considering medical or social science related careers. Although all of the girls believed engineering to be ‘male dominated’, none believed that a woman should not be engineer. Familial Influences: Parental influence was identified as key to career and study choice; only two of the girls had discussed engineering with their parents of which only one was being actively encouraged to pursue a career in engineering. Discussion: The study found that one of the most significant barriers to engineering is a lack of awareness. Engineering did not register in the girls’ lives, it was not taught in school, and only one had met a female engineer. Building on the study findings, the discussion considers how engineering could be made more attractive to young women. Whilst misconceptions about what an engineer is need to be addressed, other more fundamental pedagogical barriers, such as the need to make physics more attractive to girls and the need to develop the curriculum so as to meet the learning needs of 21st Century students are discussed. By drawing attention to the issues around gender and the barriers to engineering, this paper contributes to current debates in this area – in doing so it provides food for thought about policy and practice in engineering and engineering education.
Resumo:
Over the last twenty years, we have been continuously seeing R&D efforts and activities in developing optical fibre grating devices and technologies and exploring their applications for telecommunications, optical signal processing and smart sensing, and recently for medical care and biophotonics. In addition, we have also witnessed successful commercialisation of these R&Ds, especially in the area of fibre Bragg grating (FBG) based distributed sensor network systems and technologies for engineering structure monitoring in industrial sectors such as oil, energy and civil engineering. Despite countless published reports and papers and commercial realisation, we are still seeing significant and novel research activities in this area. This invited paper will give an overview on recent advances in fibre grating devices and their sensing applications with a focus on novel fibre gratings and their functions and grating structures in speciality fibres. The most recent developments in (i) femtosecond inscription for microfluidic/grating devices, (2) tilted grating based novel polarisation devices and (3) dual-peak long-period grating based DNA hybridisation sensors will be discussed.
Resumo:
Mobile technologies have yet to be widely adopted by the Architectural, Engineering, and Construction (AEC) industry despite being one of the major growth areas in computing in recent years. This lack of uptake in the AEC industry is likely due, in large part, to the combination of small screen size and inappropriate interaction demands of current mobile technologies. This paper discusses the scope for multimodal interaction design with a specific focus on speech-based interaction to enhance the suitability of mobile technology use within the AEC industry by broadening the field data input capabilities of such technologies. To investigate the appropriateness of using multimodal technology for field data collection in the AEC industry, we have developed a prototype Multimodal Field Data Entry (MFDE) application. This application, which allows concrete testing technicians to record quality control data in the field, has been designed to support two different modalities of data input speech-based data entry and stylus-based data entry. To compare the effectiveness or usability of, and user preference for, the different input options, we have designed a comprehensive lab-based evaluation of the application. To appropriately reflect the anticipated context of use within the study design, careful consideration had to be given to the key elements of a construction site that would potentially influence a test technician's ability to use the input techniques. These considerations and the resultant evaluation design are discussed in detail in this paper.
Resumo:
The paper has been presented at the International Conference Pioneers of Bulgarian Mathematics, Dedicated to Nikola Obreshko ff and Lubomir Tschakaloff , Sofi a, July, 2006.
Resumo:
*Supported by the Grants AV ˇCR 101-97-02, 101-90-03, GA ˇCR 201-98-1449, and by the Grant of the Faculty of Civil Engineering of the Czech Technical University No. 2003.
Resumo:
Permanent deformation and fracture may develop simultaneously when an asphalt mixture is subjected to a compressive load. The objective of this research is to separate viscoplasticity and viscofracture from viscoelasticity so that the permanent deformation and fracture of the asphalt mixtures can be individually and accurately characterized without the influence of viscoelasticity. The undamaged properties of 16 asphalt mixtures that have two binder types, two air void contents, and two aging conditions are first obtained by conducting nondestructive creep tests and nondestructive dynamic modulus tests. Testing results are analyzed by using the linear viscoelastic theory in which the creep compliance and the relaxation modulus are modeled by the Prony model. The dynamic modulus and phase angle of the undamaged asphalt mixtures remained constant with the load cycles. The undamaged asphalt mixtures are then used to perform the destructive dynamic modulus tests in which the dynamic modulus and phase angle of the damaged asphalt mixtures vary with load cycles. This indicates plastic evolution and crack propagation. The growth of cracks is signaled principally by the increase of the phase angle, which occurs only in the tertiary stage. The measured total strain is successfully decomposed into elastic strain, viscoelastic strain, plastic strain, viscoplastic strain, and viscofracture strain by employing the pseudostrain concept and the extended elastic-viscoelastic correspondence principle. The separated viscoplastic strain uses a predictive model to characterize the permanent deformation. The separated viscofracture strain uses a fracture strain model to characterize the fracture of the asphalt mixtures in which the flow number is determined and a crack speed index is proposed. Comparisons of the 16 samples show that aged asphalt mixtures with a low air void content have a better performance, resisting permanent deformation and fracture. © 2012 American Society of Civil Engineers.
Resumo:
Although the importance of translation for the development of tissue engineering, regenerative medicine and cell-based therapies is widely recognized, the process of translation is less well understood. This is particularly the case among some early career researchers who may not appreciate the intricacies of translational research or make decisions early in development which later hinders effective translation. Based on our own research and experiences as early career researchers involved in tissue engineering and regenerative medicine translation, we discuss common pitfalls associated with translational research, providing practical solutions and important considerations which will aid process and product development. Suggestions range from effective project management, consideration of key manufacturing, clinical and regulatory matters and means of exploiting research for successful commercialization.