890 resultados para cerebral palsy
Resumo:
Sleep-disordered breathing (SDB) negatively impacts stroke outcome. Near-infrared spectroscopy showed the acute cerebral hemodynamic effects of SDB.
Resumo:
Glial fibrillary acidic protein (GFAP) is a biomarker candidate indicative of intracerebral hemorrhage (ICH) in patients with symptoms of acute stroke. GFAP is released rapidly in the presence of expanding intracerebral bleeding, whereas a more gradual release occurs in ischemic stroke. In this study the diagnostic accuracy of plasma GFAP was determined in a prospective multicenter approach.
Resumo:
To systematically review the ultrasonographic criteria proposed for the diagnosis of chronic cerebrospinal venous insufficiency (CCSVI). The authors analyzed the five ultrasonographic criteria, four extracranial and one intracranial, suggested for the diagnosis of CCSVI in multiple sclerosis (MS), together with the references from which these criteria were derived and the main studies that explored the physiology of cerebrospinal drainage. The proposed CCSVI criteria are questionable due to both methodological and technical errors: criteria 1 and 3 are based on a scientifically incorrect application of data obtained in a different setting; criteria 2 and 4 have never been validated before; criterion 2 is technically incorrect; criteria 3 and 5 are susceptible to so many external factors that it is difficult to state whether the data collected are pathological or a variation from the normal. It is also unclear how it was decided that two or more of these five ultrasound criteria may be used to diagnose CCSVI, since no validation of these criteria was performed by different and independent observers nor were they blindly compared with a validated gold-standard investigation. The European Society of Neurosonology and Cerebral Hemodynamics (ESNCH) has considerable concerns regarding the accuracy of the proposed criteria for CCSVI in MS. Therefore, any potentially harmful interventional treatment such as transluminal angioplasty and/or stenting should be strongly discouraged.
Resumo:
Auditory hallucinations comprise a critical domain of psychopathology in schizophrenia. Repetitive transcranial magnetic stimulation (TMS) has shown promise as an intervention with both positive and negative reports. The aim of this study was to test resting-brain perfusion before treatment as a possible biological marker of response to repetitive TMS. Twenty-four medicated patients underwent resting-brain perfusion magnetic resonance imaging with arterial spin labeling (ASL) before 10 days of repetitive TMS treatment. Response was defined as a reduction in the hallucination change scale of at least 50%. Responders (n=9) were robustly differentiated from nonresponders (n=15) to repetitive TMS by the higher regional cerebral blood flow (CBF) in the left superior temporal gyrus (STG) (P<0.05, corrected) before treatment. Resting-brain perfusion in the left STG predicted the response to repetitive TMS in this study sample, suggesting this parameter as a possible bio-marker of response in patients with schizophrenia and auditory hallucinations. Being noninvasive and relatively easy to use, resting perfusion measurement before treatment might be a clinically relevant way to identify possible responders and nonresponders to repetitive TMS.
Resumo:
The default-mode network (DMN) was shown to have aberrant blood oxygenation-level-dependent (BOLD) activity in major depressive disorder (MDD). While BOLD is a relative measure of neural activity, cerebral blood flow (CBF) is an absolute measure. Resting-state CBF alterations have been reported in MDD. However, the association of baseline CBF and CBF fluctuations is unclear in MDD. Therefore, the aim was to investigate the CBF within the DMN in MDD, applying a strictly data-driven approach. In 22 MDD patients and 22 matched healthy controls, CBF was acquired using arterial spin labeling (ASL) at rest. A concatenated independent component analysis was performed to identify the DMN within the ASL data. The perfusion of the DMN and its nodes was quantified and compared between groups. The DMN was identified in both groups with high spatial similarity. Absolute CBF values within the DMN were reduced in MDD patients (p<0.001). However, after controlling for whole-brain gray matter CBF and age, the group difference vanished. In patients, depression severity was correlated with reduced perfusion in the DMN in the posterior cingulate cortex and the right inferior parietal lobe. Hypoperfusion within the DMN in MDD is not specific to the DMN. Still, depression severity was linked to DMN node perfusion, supporting a role of the DMN in depression pathobiology. The finding has implications for the interpretation of BOLD functional magnetic resonance imaging data in MDD.
Resumo:
To evaluate the outcome in elderly patients (≥ 75 years) undergoing elective aortic arch surgery with the aid of selective antegrade cerebral perfusion (SACP) and moderate hypothermic circulatory arrest (HCA).
Resumo:
This study compared the effects of isoflurane in pigs (n=10 Yorkshire-Landrace cross) and dairy goats (n=10) by evaluation of electroencephalographic (EEG) burst suppression thresholds (BST) in the cerebral cortex and minimum alveolar concentration (MAC) values in the spinal cord. The study also investigated whether individual MAC values can predict the effects of isoflurane on the cerebral cortex. MAC values and BST/MAC ratios were significantly different between species. Inhibition of movement by isoflurane may be less effective in pigs than in goats. No significant correlation was found between individual MAC and BST values, indicating that in single animals the individual MAC poorly reflects the cerebrocortical depressant effect of isoflurane in pigs and goats.
Resumo:
Independent component analysis (ICA) or seed based approaches (SBA) in functional magnetic resonance imaging blood oxygenation level dependent (BOLD) data became widely applied tools to identify functionally connected, large scale brain networks. Differences between task conditions as well as specific alterations of the networks in patients as compared to healthy controls were reported. However, BOLD lacks the possibility of quantifying absolute network metabolic activity, which is of particular interest in the case of pathological alterations. In contrast, arterial spin labeling (ASL) techniques allow quantifying absolute cerebral blood flow (CBF) in rest and in task-related conditions. In this study, we explored the ability of identifying networks in ASL data using ICA and to quantify network activity in terms of absolute CBF values. Moreover, we compared the results to SBA and performed a test-retest analysis. Twelve healthy young subjects performed a fingertapping block-design experiment. During the task pseudo-continuous ASL was measured. After CBF quantification the individual datasets were concatenated and subjected to the ICA algorithm. ICA proved capable to identify the somato-motor and the default mode network. Moreover, absolute network CBF within the separate networks during either condition could be quantified. We could demonstrate that using ICA and SBA functional connectivity analysis is feasible and robust in ASL-CBF data. CBF functional connectivity is a novel approach that opens a new strategy to evaluate differences of network activity in terms of absolute network CBF and thus allows quantifying inter-individual differences in the resting state and task-related activations and deactivations.
Resumo:
In Alzheimer's disease (AD) patients, episodic memory impairments are apparent, yet semantic memory difficulties are also observed. While the episodic pathology has been thoroughly studied, the neurophysiological mechanisms of the semantic impairments remain obscure. Semantic dementia (SD) is characterized by isolated semantic memory deficits. The present study aimed to find an early marker of mild AD and SD by employing a semantic priming paradigm during electroencephalogram recordings. Event-related potentials (ERP) of early (P1, N1) and late (N400) word processing stages were obtained to measure semantic memory functions. Separately, baseline cerebral blood flow (CBF) was acquired with arterial spin labeling. Thus, the analysis focused on linear regressions of CBF with ERP topographical similarity indices in order to find the brain structures that showed altered baseline functionality associated with deviant ERPs. All participant groups showed semantic priming in their reaction times. Furthermore, decreased CBF in the temporal lobes was associated with abnormal N400 topography. No significant CBF clusters were found for the early ERPs. Taken together, the neurophysiological results suggested that the automatic spread of activation during semantic word processing was preserved in mild dementia, while controlled access to the words was impaired. These findings suggested that N400-topography alterations might be a potential marker for the detection of early dementia. Such a marker could be beneficial for differential diagnosis due to its low cost and non-invasive application as well as its relationship with semantic memory dysfunctions that are closely associated to the cortical deterioration in regions crucial for semantic word processing.
Resumo:
Vascular endothelial growth factor (VEGF) has potent angiogenic and neuroprotective effects in the ischemic brain. Its effect on axonal plasticity and neurological recovery in the post-acute stroke phase was unknown. Using behavioral tests combined with anterograde tract tracing studies and with immunohistochemical and molecular biological experiments, we examined effects of a delayed i.c.v. delivery of recombinant human VEGF(165), starting 3 days after stroke, on functional neurological recovery, corticorubral plasticity and inflammatory brain responses in mice submitted to 30 min of middle cerebral artery occlusion. We herein show that the slowly progressive functional improvements of motor grip strength and coordination, which are induced by VEGF, are accompanied by enhanced sprouting of contralesional corticorubral fibres that branched off the pyramidal tract in order to cross the midline and innervate the ipsilesional parvocellular red nucleus. Infiltrates of CD45+ leukocytes were noticed in the ischemic striatum of vehicle-treated mice that closely corresponded to areas exhibiting Iba-1+ activated microglia. VEGF attenuated the CD45+ leukocyte infiltrates at 14 but not 30 days post ischemia and diminished the microglial activation. Notably, the VEGF-induced anti-inflammatory effect of VEGF was associated with a downregulation of a broad set of inflammatory cytokines and chemokines in both brain hemispheres. These data suggest a link between VEGF's immunosuppressive and plasticity-promoting actions that may be important for successful brain remodeling. Accordingly, growth factors with anti-inflammatory action may be promising therapeutics in the post-acute stroke phase.
Resumo:
In selected stroke patients intravenous thrombolysis and/or endovascular therapies lead to a significant reduction of long term disabilities. In case of no contraindications, patients with acute ischemic stroke, which arrive within the time window on the emergency unit, should receive thrombolysis consequently and current data indicate that patients with a severe acute ischemic stroke and a proximal cerebral arterial vessel occlusion (i. e. main stem of the arteria cerebri media, posterior, maybe also anterior, arteria carotis interna and basilaris) should preferentially be treated endovascularly, patients with a peripheral cerebral arterial vessel occlusion (i. e. main branch of the arteria cerebri media, anterior and posterior) and mild symptoms with intravenous thrombolysis.