901 resultados para cell viability


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nucleus pulposus (NP) regeneration by the application of injectable cell-embedded hydrogels is an appealing approach for tissue engineering. We investigated a thermo-reversible hydrogel (TR-HG), based on a modified polysaccharide with a thermo-reversible polyamide [poly(N-isopropylacrylamide), pNIPAM], which is made to behave as a liquid at room temperature and hardens at > 32 °C. In order to test the hydrogel, a papain-induced bovine caudal disc degeneration model (PDDM), creating a cavity in the NP, was employed. Human mesenchymal stem cells (hMSCs) or autologous bovine NP cells (bNPCs) were seeded in TR-HG; hMSCs were additionally preconditioned with rhGDF-5 for 7 days. Then, TR-HG was reversed to a fluid and the cell suspension injected into the PDDM and kept under static loading for 7 days. Experimental design was: (D1) fresh disc control + PBS injection; (D2) PDDM + PBS injection; (D3) PDDM + TR-HG (material control); (D4) PDDM + TR-HG + bNPCs; (D5) PDDM + TR-HG + hMSCs. Magnetic resonance imaging performed before and after loading, on days 9 and 16, allowed imaging of the hydrogel-filled PDDM and assessment of disc height and volume changes. In gel-injected discs the NP region showed a major drop in volume and disc height during culture under static load. The RT–PCR results of injected hMSCs showed significant upregulation of ACAN, COL2A1, VCAN and SOX9 during culture in the disc cavity, whereas the gene expression profile of NP cells remained unchanged. The cell viability of injected cells (NPCs or hMSCs) was maintained at over 86% in 3D culture and dropped to ~72% after organ culture. Our results underline the need for load-bearing hydrogels that are also cyto-compatible.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cannabinoids are implicated in the control of cell proliferation, but little is known about the role of the endocannabinoid system in human malignant melanoma. This study was aimed at characterizing the in vitro antitumor activity of anandamide (AEA) in A375 melanoma cells. The mRNA expression of genes that code for proteins involved in the metabolism and in the mechanism of AEA action was assessed by RT-PCR. Cell viability was tested using WST-1 assay and the apoptotic cell death was determined by measuring caspase 3/7 activities. A375 cells express high levels of fatty acid amide hydrolase (FAAH), cyclooxygenase (COX)-2, cannabinoid receptor 1 (CB1), transient receptor potential cation channel subfamily V member 1 (TRPV1) and G-protein-coupled receptor 55 (GPR55) genes. AEA induced a concentration-dependent cytotoxicity with an IC50 of 5.8±0.7 µM and such an effect was associated to a caspase-dependent apoptotic pathway. AEA cytotoxicity was potentiated by FAAH inhibition (2-fold increase, p<0.05) and mitigated by COX-2 or lipoxygenase (LOX) inhibition (5- and 3-fold decrease, respectively; p<0.01). Blocking CB1 receptors partially decreased AEA cytotoxicity, whereas selective antagonism on the TRPV1 barely affected the mechanism of AEA action. Finally, methyl-β-cyclodextrin, a membrane cholesterol depletory, completely reversed the cytotoxicity induced by the selective GPR55 agonist, O-1602, and AEA. Overall, these findings demonstrate that AEA induces cytotoxicity against human melanoma cells in the micromolar range of concentrations through a complex mechanism, which involves COX-2 and LOX-derived product synthesis and CB1 activation. Lipid raft modulation, probably linked to GPR55 activation, might also have a role.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Melanoma is known to be highly resistant to chemotherapy. Treatment with high dose IL-2 has shown significant clinical benefit in a minority of metastatic melanoma patients and has lead to long term survival in a few cases. However, this treatment is associated with excessive multiorgan toxicities, which severely limits its use. We hypothesize that one mechanism of effective IL-2 therapy is through the direct upregulation of IL-24 production in melanoma tumors and subsequent IL-24 mediated tumor growth suppression. Five melanoma cell lines were treated with high dose recombinant hIL-2 at 1000U/ml. Three of the cell lines (A375, WM1341, WM793) showed statistically significant increases in their levels of IL-24 protein when measured by Western blotting, while the remaining two lines (WM35, MeWo) remained negative for IL-24 message and protein. This increase in IL-24 was abolished by either preincubating with an anti-IL-2 antibody or by blocking the IL-2 receptor directly with antibodies against the receptor chains. We also demonstrated by ELISA that these three cell lines secrete IL-24 protein in higher amounts when stimulated with IL-2 than do untreated cells. These cells were found to contain IL-2R beta and gamma message by RT-PCR and also expressed higher levels of IL-24 when treated with IL-15, which shares the IL-2R beta chain. Thus we propose that IL-2 is signaling through IL-2R beta on some melanoma cells to upregulate IL-24 protein expression. To address the biological function of IL-2 in melanoma cells, five cell lines were treated with IL-2 and cell viability determined. Cell growth was found to be significantly decreased by day 4 in the IL-24 positive cell lines while no effect on growth was seen in WM35 or MeWo. Incubating the cells with anti-IL-24 antibody or transfecting with IL-24 siRNA effectively negated the growth suppression seen with IL-2. These data support our hypothesis that in addition to its immunotherapeutic effects, IL-2 also acts directly on some melanoma tumors and that the IL-24 and IL-2R beta status of a tumor may be useful in predicting patient response to high dose IL-2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: Resistance to platinum chemotherapy remains a significant problem in ovarian carcinoma. Here, we examined the biological mechanisms and therapeutic potential of targeting a critical platinum resistance gene, ATP7B, using both in vitro and in vivo models. EXPERIMENTAL DESIGN: Expression of ATP7A and ATP7B was examined in ovarian cancer cell lines by real-time reverse transcription-PCR and Western blot analysis. ATP7A and ATP7B gene silencing was achieved with targeted small interfering RNA (siRNA) and its effects on cell viability and DNA adduct formation were examined. For in vivo therapy experiments, siRNA was incorporated into the neutral nanoliposome 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC). RESULTS: ATP7A and ATP7B genes were expressed at higher levels in platinum-resistant cells compared with sensitive cells; however, only differences in ATP7B reached statistical significance. ATP7A gene silencing had no significant effect on the sensitivity of resistant cells to cisplatin, but ATP7B silencing resulted in 2.5-fold reduction of cisplatin IC(50) levels and increased DNA adduct formation in cisplatin-resistant cells (A2780-CP20 and RMG2). Cisplatin was found to bind to the NH(2)-terminal copper-binding domain of ATP7B, which might be a contributing factor to cisplatin resistance. For in vivo therapy experiments, ATP7B siRNA was incorporated into DOPC and was highly effective in reducing tumor growth in combination with cisplatin (70-88% reduction in both models compared with controls). This reduction in tumor growth was accompanied by reduced proliferation, increased tumor cell apoptosis, and reduced angiogenesis. CONCLUSION: These data provide a new understanding of cisplatin resistance in cancer cells and may have implications for therapeutic reversal of drug resistance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The in vitro conversion of phosphatidylglycerophosphate (PGP) to phosphatidylglycerol (PG) involves at least two membrane bound phosphatases in Escherichia coli. The genes encoding these two PGP-phosphatases, pgpA and pgpB, are unique and map distally to min 10 and min 28 respectively. Although point mutations in either or both of these genes decrease the level of PGP phosphatase as assayed in vitro, and also result in a minor accumulation of the precursor, PGP, in the membrane, the mutations have no significant effect on the level of PG in the cell (Icho, T. and Raetz, C. R. H. (1983) J. Bact. 153, 722-730). This dilemma suggests that there remains a significant level of phosphatase activity in the pgpAand pgpB mutants which is sufficient to support normal PG metabolism in vivo, but it is not clear whether this activity is a consequence of a separate phosphatase, or due to "leakiness" of the point lesions in these genes. To address this problem, we have constructed null alleles of the two phosphatase genes, and characterized the effects of these mutations on PG metabolism. Our findings demonstrate that neither the pgpA nor the pgpB phosphatase gene is essential for cell viability. In addition, similar to the pgpA$\sp{-}$, pgpB$\sp{-}$ double point mutant, a strain containing both of the corresponding null alleles still retains enough phosphatase activity to maintain normal levels of PG in the membrane. These data demonstrate that there exists at least a third gene encoding a major biosynthetic phosphatase which is responsible for the in vivo conversion of PGP to PG, and calls into question the actual roles of the pgpA and the pgpB gene products in PG metabolism and cell function. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mitochondrial carnitine palmitoyltransferase (CPT) system is composed of two proteins, CPT-I and CPT-II, involved in the transport of fatty acids into the mitochondrial matrix to undergo $\beta$-oxidation. CPT-I is located outside the inner membrane and CPT-II is located on the inner aspect of the inner membrane. The CPT proteins are distinct with different molecular weights and activities. The malonyl-CoA sensitivity of CPT-I has been proposed as a regulatory step in $\beta$-oxidation. Using the neonatal rat cardiac myocyte, assays were designed to discriminate between these activities in situ using digitonin and Triton X-100. With this methodology, we are able to determine the involvement of the IGF-I pathway in the insulin-mediated increase in CPT activities. Concentrations of digitonin up to 25 $\mu$M fail to release citrate synthase from the mitochondrial matrix or alter the malonyl-CoA sensitivity of CPT-I. If the mitochondrial matrix was exposed, malonyl-CoA insensitive CPT-II would reduce malonyl-CoA sensitivity. In contrast to digitonin, Triton X-100 (0.15%) releases citrate synthase from the matrix and exposes CPT-II. CPT-II activity is confirmed by the absence of malonyl-CoA sensitivity. To examine the effects of various agents on the expression and/or activity of CPT, it is necessary to use serum-free medium to eliminate mitogenic effects of serum proteins. Comparison of different media to optimize CPT activity and cell viability resulted in the decision to use Dulbecco's Modified Eagle medium supplemented with transferrin. In three established models of cardiac hypertrophy using the neonatal rat cardiac myocyte there is a significant increase in CPT-I and CPT-II activity in the treated cells. Analogous to the situation seen in the hypertrophy model, insulin also significantly increases the activity of the mitochondrial proteins CPT-I, CPT-II and cytochrome oxidase with a coinciding increase the expression of CPT-II and cytochrome oxidase mRNA. The removal of serum increases the I$\sb{50}$ (concentration of inhibitor that halves enzyme activity) of CPT-I for malonyl-CoA by four-fold. Incubation with insulin returns I$\sb{50}$ values to serum levels. Incubation with insulin significantly increases malonyl-CoA and ATP levels in the cells with a resulting reduction in palmitate oxidation. Once malonyl-CoA inhibition of CPT-I is removed by permeabilizing the cells, insulin significantly increases the oxidation of palmitoyl-CoA in a manner which parallels the increase in CPT-I activity. Interestingly, CPT-II activity increases significantly only at the tissue culture concentration (1.7 $\mu$M) of insulin suggesting that the IGF-I pathway may be involved. Supporting a role for the IGF-I pathway in the insulin-induced increase in CPT activity is the significant increase in the synthesis of both cellular and mitochondrial proteins as well as increased synthesis of CPT-II. Consistent with an IGF-mediated pathway for the effect of insulin, IGF-I (10 ng/ml) significantly increases the activities of both CPT-I and -II. An IGF-I analogue which inhibits the autophosphorylation of the IGF-I receptor blunts the insulin-mediated increase in CPT-I and -II activity by greater than 70% and virtually eliminates the IGF-I response by greater than 90%. This is the first study to demonstrate the involvement of the IGF-I pathway in the regulation of mitochondrial protein expression, e.g. CPT. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tup1 forms a complex with Ssn6 in yeast. Ssn6-Tup1 complex is recruited via direct interactions with specific DNA binding proteins to a specific promoter region and mediates repression of several sets of genes including a-cell specific genes (asg) in $\alpha$ cells. It has been shown that repression of asgs also requires histone H4 and that Tup1 can directly interact with H3 and H4 in vitro. To address whether histone H3 is required for the repression of asgs, I have examined the effect of H3 and H4 mutations on the expression of a $\alpha$2-controlled LacZ reporter. Assay of $\beta$-glactosidase shows that mutations in either H3 or H4 cause a weak derepression of the reporter gene. Some double mutations result in a stronger derepression, while others do not. The H3 N-terminal deletion also leads to a slightly decreased expression of the reporter gene in $\alpha$ cells. Our data suggest that the N-termini of both H3 and H4 are cooperatively involved in the repression of a-cell specific genes in $\alpha$ cells, possibly through their interaction with Tup1.^ GCN5 was originally identified as a transcriptional regulator required to activate a subset of genes in yeast. Recently, it has been shown that GCN5 encodes the catalytic subunit of a nuclear histone acetyltransferase, providing the first direct link between histone acetylation and gene transcription. Recombinant Gcn5p (rGcn5p) exhibits a limited substrate specificity in vitro. However, neither the specificity of this enzyme in vivo nor the importance of particular acetylated residues to transcription or cell growth are well defined. In order to define the sites of histone acetylation mediated by Gcn5p in vivo and assess the significance of histone acetylation, more than 30 yeast strains have been constructed to bear specific H3 and/or H4 mutations in the presence or absence of GCN5 function. Our genetic data suggest that Gcn5p may have additional targets in vivo that are not identified as the targets of rGcn5p by previous studies. Western analysis using antibodies specifically recognizing particular acetylated isoforms of H3 and H4 led us to conclude that Gcn5p is necessary for full acetylation of multiple sites in both H3 and H4 in vivo. Consistent with these observations, rGcn5p still acetylates histones H3 and H4 bearing mutations either in H3 K14 or H4 K8,16, sites previously identified as the targets of acetylation by rGcn5p in H3 and H4. Our data also demonstrated that Gcn5p-mediated acetylation events are important for normal progression of the cell cycle and for transcriptional activation. Furthermore, a critical overall level of acetylation is essential for cell viability. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of hepatocellular carcinomas from malignant hepatocytes is frequently associated with intra- and peritumoral accumulation of connective tissue arising from activated hepatic stellate cells (HSC). Inhibition of receptor tyrosine kinase (RTK) signaling showed promise in the treatment of hepatocellular carcinoma. However, there is a lack of knowledge about the effects of RTK inhibitors on the tumor supportive cells. We performed in vitro experiments to study whether Sunitinib, a platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) RTKs' inhibitor, could block both activated HSC functions and angiogenesis and thus prevent the progression of cirrhotic liver to hepatocellular carcinoma. In immortalized human activated HSC LX-2, treatment with Sunitinib 100 nM blocked collagen synthesis by 47%, as assessed by Sirius Red staining, attenuated HSC contraction by 65%, and reduced cell migration by 28% as evaluated using a Boyden's chamber, without affecting cell viability, measured by Trypan blue staining, and apoptosis, measured by propidium iodide (PI) incorporation assay. Our data revealed that Sunitinib treatment blocked the transdifferentiation of primary human HSC (hHSC) to activated myofibroblast-like cells by 65% without affecting hHSC apoptosis and migration. In in vitro angiogenic assays, Sunitinib 100 nM reduced endothelial cells (EC) ring formation by 46% and tube formation by 68%, and decreased vascular sprouting in aorta ring assay and angiogenesis in vascular bed of chick embryo. In conclusion, the present study demonstrates that the RTK inhibitor Sunitinib blocks the activation of HSC and angiogenesis suggesting its potential as a drug candidate in pathological conditions like liver fibrosis and hepatocellular carcinoma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction Previous studies on the influence of torsion and combined torsion-compression loading revealed a positive effect on the cell viability when a repetitive short-term torsion was applied at a physiological magnitude to intervertebral disc organ culture.1 However, after an extended period (8 hours) of combined torsion-compression loading, substantial cell death was detected in the nucleus pulposus (NP).2 In this follow-up study, we aimed to investigate the relationship, if any, between the duration of torsion applied to the intervertebral disc (IVD) and the level of NP cell viability. Materials and Methods Bovine caudal discs were harvested and cultured in a custom-built multiaxis dynamic loading bioreactor.2 Torsion (± 2 degrees) was applied to the samples at a frequency of 0.2 Hz. Torsion was applied for durations of 0, 1, 4, and 8 h/d, repeated over 7 days. After the last day of loading, disc tissue was dissected for analysis of cell viability and gene expression. Results Disc NP cell viability remained above 85% after torsional loading for 0, 1, or 4 h/d. Viability was statistical significantly reduced to below 70% when torsion was applied for 8 h/d (p = 0.03) (Table 1). The daily duration of torsional loading did not affect the AF cell viability (> 80% for all loading durations). The trend of collagen 2 gene upregulation and matrix metalloproteases 13 downregulation with an increasing duration of torsion was observed in both NP and AF (Fig. 1).Conclusion We have demonstrated that an extended duration of torsion could inhibit the survival of NP cells within the IVD in organ culture. Acknowledgments Funds from the Orthopedic Department of the Insel University Hospital of Bern and a private donation from Prof. Dr. Paul Heini, Spine Surgeon, Sonnenhof Clinic Bern were received to support this work. Disclosure of Interest None declared References References 1 Chan SC, Ferguson SJ, Wuertz K, Gantenbein-Ritter B. Biological response of the intervertebral disc to repetitive short-term cyclic torsion. Spine 2011;36(24):2021–2030 2 Chan SC, Walser J, Käppeli P, Shamsollahi MJ, Ferguson SJ, Gantenbein-Ritter B. Region specific response of intervertebral disc cells to complex dynamic loading: an organ culture study using a dynamic torsion-compression bioreactor. PLoS ONE 2013;8(8):e72489

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current research indicates that exogenous stem cells may accelerate reparative processes in joint disease but, no previous studies have evaluated whether bone marrow cells (BMCs) target the injured cranial cruciate ligament (CCL) in dogs. The objective of this study was to investigate engraftment of BMCs following intra-articular injection in dogs with spontaneous CCL injury. Autologous PKH26-labelled BMCs were injected into the stifle joint of eight client-owned dogs with CCL rupture. The effects of PKH26 staining on cell viability and PKH26 fluorescence intensity were analysed in vitro using a MTT assay and flow cytometry. Labelled BMCs in injured CCL tissue were identified using fluorescence microscopy of biopsies harvested 3 and 13 days after intra-articular BMC injection. The intensity of PKH26 fluorescence declines with cell division but was still detectable after 16 days. Labelling with PKH26 had no detectable effect on cell viability or proliferation. Only rare PKH26-positive cells were present in biopsies of the injured CCL in 3/7 dogs and in synovial fluid in 1/7 dogs. No differences in transforming growth factor-beta1, and interleukin-6 before and after BMC treatment were found and no clinical complications were noted during a 1 year follow-up period. In conclusion, BMCs were shown to engraft to the injured CCL in dogs when injected into the articular cavity. Intra-articular application of PKH26-labelled cultured mesenchymal stem cells is likely to result in higher numbers of engrafted cells that can be tracked using this method in a clinical setting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE Primary nasal epithelial cells are used for diagnostic purposes in clinical routine and have been shown to be good surrogate models for bronchial epithelial cells in studies of airway inflammation and remodeling. We aimed at comparing different instruments allowing isolation of nasal epithelial cells. METHODS Primary airway epithelial cell cultures were established using cells acquired from the inferior surface of the middle turbinate of both nostrils. Three different instruments to isolate nasal cells were used: homemade cytology brush, nasal swab, and curette. Cell count, viability, time until a confluent cell layer was reached, and success rate in establishing cell cultures were evaluated. A standard numeric pain intensity scale was used to assess the acceptability of each instrument. RESULTS Sixty healthy adults (median with interquartile range [IQR] age of 31 [26-37] years) participated in the study. Higher number of cells (×10(5) cells/ml) was obtained using brushes (9.8 [5.9-33.5]) compared to swabs (2.4 [1.5-3.9], p < 0.0001) and curettes (5.5 [4.4-6.9], p < 0.01). Cell viability was similar between groups. Cells obtained by brushes had the fastest growth rate, and the success rate in establishing primary cell cultures was highest with brushes (90% vs. 65% for swabs and 70% for curettes). Pain was highest with curettes (VAS score 4.0 [3.0-5.0] out of 10). The epithelial phenotype of the cultures was confirmed through cytokeratin and E-cadherin staining. CONCLUSIONS All three types of instruments allow collection and growth of human nasal epithelial cells with good acceptability to study participants. The most efficient instrument is the nasal brush.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Engineering nanoparticles (NPs) for immune modulation require a thorough understanding of their interaction(s) with cells. Gold NPs (AuNPs) were coated with polyethylene glycol (PEG), polyvinyl alcohol (PVA) or a mixture of both with either positive or negative surface charge to investigate uptake and cell response in monocyte-derived dendritic cells (MDDCs). Inductively coupled plasma optical emission spectrometry and transmission electron microscopy were used to confirm the presence of Au inside MDDCs. Cell viability, (pro-)inflammatory responses, MDDC phenotype, activation markers, antigen uptake and processing were analyzed. Cell death was only observed for PVA-NH2 AuNPs at the highest concentration. MDDCs internalize AuNPs, however, surface modification influenced uptake. Though limited uptake was observed for PEG-COOH AuNPs, a significant tumor necrosis factor-alpha release was induced. In contrast, (PEG+PVA)-NH2 and PVA-NH2 AuNPs were internalized to a higher extent and caused interleukin-1beta secretion. None of the AuNPs caused changes in MDDC phenotype, activation or immunological properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose The radiolanthanide 161Tb (T 1/2 = 6.90 days, Eβ− av = 154 keV) was recently proposed as a potential alternative to 177Lu (T 1/2 = 6.71 days, Eβ− av = 134 keV) due to similar physical decay characteristics but additional conversion and Auger electrons that may enhance the therapeutic efficacy. The goal of this study was to compare 161Tb and 177Lu in vitro and in vivo using a tumour-targeted DOTA-folate conjugate (cm09). Methods 161Tb-cm09 and 177Lu-cm09 were tested in vitro on folate receptor (FR)-positive KB and IGROV-1 cancer cells using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay. In vivo 161Tb-cm09 and 177Lu-cm09 (10 MBq, 0.5 nmol) were investigated in two different tumour mouse models with regard to the biodistribution, the possibility for single photon emission computed tomography (SPECT) imaging and the antitumour efficacy. Potentially undesired side effects were monitored over 6 months by determination of plasma parameters and examination of kidney function with quantitative SPECT using 99mTc-dimercaptosuccinic acid (DMSA). Results To obtain half-maximal inhibition of tumour cell viability a 4.5-fold (KB) and 1.7-fold (IGROV-1) lower radioactivity concentration was required for 161Tb-cm09 (IC50 ~0.014 MBq/ml and ~2.53 MBq/ml) compared to 177Lu-cm09 (IC50 ~0.063 MBq/ml and ~4.52 MBq/ml). SPECT imaging visualized tumours of mice with both radioconjugates. However, in therapy studies 161Tb-cm09 reduced tumour growth more efficiently than 177Lu-cm09. These findings were in line with the higher absorbed tumour dose for 161Tb-cm09 (3.3 Gy/MBq) compared to 177Lu-cm09 (2.4 Gy/MBq). None of the monitored parameters indicated signs of impaired kidney function over the whole time period of investigation after injection of the radiofolates. Conclusion Compared to 177Lu-cm09 we demonstrated equal imaging features for 161Tb-cm09 but an increased therapeutic efficacy for 161Tb-cm09 in both tumour cell lines in vitro and in vivo. Further preclinical studies using other tumour-targeting radioconjugates are clearly necessary to draw final conclusions about the future clinical perspectives of 161Tb.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Terbium-149 is among the most interesting therapeutic nuclides for medical applications. It decays by emission of short-range α-particles (Eα = 3.967 MeV) with a half-life of 4.12 h. The goal of this study was to investigate the anticancer efficacy of a 149Tb-labeled DOTA-folate conjugate (cm09) using folate receptor (FR)-positive cancer cells in vitro and in tumor-bearing mice. 149Tb was produced at the ISOLDE facility at CERN. Radiolabeling of cm09 with purified 149Tb resulted in a specific activity of ~1.2 MBq/nmol. In vitro assays performed with 149Tb-cm09 revealed a reduced KB cell viability in a FR-specific and activity concentration-dependent manner. Tumor-bearing mice were injected with saline only (group A) or with 149Tb-cm09 (group B: 2.2 MBq; group C: 3.0 MBq). A significant tumor growth delay was found in treated animals resulting in an increased average survival time of mice which received 149Tb-cm09 (B: 30.5 d; C: 43 d) compared to untreated controls (A: 21 d). Analysis of blood parameters revealed no signs of acute toxicity to the kidneys or liver in treated mice over the time of investigation. These results demonstrated the potential of folate-based α-radionuclide therapy in tumor-bearing mice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrogels have been described as ideal scaffolds for cells of 3D tissue constructs and hold strong promises with respect to in vitro 3D-cell-culture, where cells are isolated from native extracellular matrix (ECM). Synthesized polyethyleneglycol (PEG) hydrogels are appealing with regard to potential for cell therapy or as vehicles for drug delivery or even to regenerate tissue with similar hydrogel-like properties such as the nucleus pulposus of the intervertebral disc (IVD). Here, we tested whether incorporation of RGD motive would hinder discogenic differentiation of primary bone marrow-derived human mesenchymal stem cells (hMSCs) but favor proliferation of undifferentiated hMSCs. HMSCs were embedded in +RGD containing or without RGD PEG hydrogel and pre-conditioned with or without growth and differentiation factor-5 (rhGDF-5) for 13 days. Afterwards, all hMSCs-PEG gels were subsequently cyclically loaded (15% strain, 1Hz) for 5 consecutive days in a bioreactor to generate an IVD-like phenotype. Higher metabolic activity (resazurin assay) was found in groups with rhGDF5 in both gel types with and without RGD. Cell viability and morphology measured by confocal laser microscopy and DNA content showed decreased values (~60%) after 18 days of culture. Real-time RT-PCR of an array of 15 key genes suspected to be distinctive for IVD cells revealed moderate response to rhGDF5 and mechanical loading as also shown by histology staining. Preconditioning and mechanical loading showed relatively moderate responses revealed from both RT-PCR and histology although hMSCs were demonstrated to be potent to differentiate into chondrocyte-progenitor cells in micro- mass and 3D alginate bead culture.